Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Voice and data services down for many customers

January 14, 2026

Juniper Research releases emerging IoT trends report for 2026 Internet…

January 14, 2026

Apple Picking Google Gemini to Power Siri Was About Buying Time

January 14, 2026
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Green Technology»Ultrasound system can remove BPA from water more effectively
Green Technology

Ultrasound system can remove BPA from water more effectively

Editor-In-ChiefBy Editor-In-ChiefAugust 9, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Ultrasound system can remove BPA from water more effectively
Share
Facebook Twitter LinkedIn Pinterest Email



Ultrasound system can remove BPA from water more effectively

Researchers have found a new way to remove a common pollutant from water using controlled waves of ultrasound, without the use of additional chemicals.

The system, developed by chemists from the University of Glasgow, can scrub up to 94% of the traces of Bisphenol A (BPA) from samples of contaminated water by using ultrasound to create conditions similar to the surface of the sun in bubbles of contaminated water.

The approach appears to offer a novel refinement of pre-existing ultrasound approaches to removing BPA, which produce cavitation bubbles but with lower energy or efficiency, and in some cases with a reliance on chemical catalysts or oxidisers to enhance BPA degradation.

In the future, scaled-up versions of this latest prototype could be used in water treatment plants, say the group. It could also help industry remove BPA and other hard-to-treat pollutants from wastewater before it is discharged into public waterways.

Currently, around 10 billion kilograms of BPA are produced each year, mainly for use in plastics. When traces of BPA enter the human body, they can build up over time, disrupting the endocrine system and upsetting the delicate balance of hormone production. Exposure to BPA has been shown to have negative effects on foetal development and has been linked to the development a range of serious health conditions in adults.

Although BPA’s use in common consumer goods like food packaging, reuseable bottles and thermal paper receipts has been reduced in recent years, its decades of widespread use in the plastics industry has made it a common pollutant in water supplies around the globe.

In a paper published in the journal Ultrasonics Sonochemistry, researchers from the University of Glasgow’s School of Chemistry show how they developed a dual-frequency ultrasound system to help eradicate BPA from water.

It works by generating millions of highly-energetic microscopic bubbles in contaminated water through the application of controlled ultrasound. When these bubbles grow and collapse, they briefly create extreme conditions of high temperature and pressure, creating highly-reactive ‘hot spots’. The conditions in these hot spots are intense enough to break BPA molecules down into harmless substances like carbon dioxide, safely removing the pollutant from the water.

Combining two frequencies of ultrasound during the process enabled the researchers to produce more powerful effects than a single frequency of ultrasound could achieve. In the lab, they tested the system’s effectiveness by measuring both the direct removal of BPA molecules and the broader reduction of organic pollutants when they were exposed to frequencies combined at either 20 kHz and 37 kHz, or 20 kHz and 80 kHz.

The 20 kHz / 37 kHz achieved the best results in the 40-minute tests, degrading 94% of the BPA in samples of polluted water and creating a 67% reduction in chemical oxygen demand. Chemical oxygen demand is a metric often relied on by the water industry to assess water quality. It is used as an indirect measure of the amount of carbon-based matter in water by measuring the oxygen needed to chemically oxidise all of this matter to harmless species like carbon dioxide.

Shaun Fletcher, the paper’s first author, said: “Traditional water treatment facilities aren’t fully equipped to deal with BPA pollution. At the moment, where they do try to deal with it, the focus is on removal with activated sludge, or with absorption on activated carbon. Once removed from water, the BPA hangs around in this sludge or carbon, and still needs disposed of. We’ve focused on actively degrading the chemical itself, with no secondary treatment required.

“What we’ve been able to show for the first time is that ultrasound alone can offer an effective method of removing BPA from water. Previous work in this area has required combining ultrasound with catalysts or other chemicals, but our dual-frequency approach is much simpler. You don’t need to worry about removing your catalyst or further purifying your water by removing anything you’ve added to it in the treatment process.”

Paper co-author Dr Lukman Yusuf said: “The key to this approach is the quality of the the bubbles we’re generating using ultrasound. We’ve shown in this that we can reliably generate bubbles with the conditions required to degrade BPA, building on previous research from the group which demonstrated its effectiveness in removing methylene blue, another common water pollutant.

“Ultimately, we’d like to expand this technique to help tackle a wide range of pollutants, including ‘forever chemicals’ like PFAs. We’re currently in discussions with water companies to explore how this technology might be adopted in industry in the years to come.”

The research is the latest development from the School of Chemistry’s Symes Group in the field of sonochemistry, which uses controlled sound waves to drive chemical reactions.

In June, the team showed how ultrasound can be used to produce nitrate from air and water, a breakthrough development which could help farmers sustainably generate their own fertiliser.

Professor Mark Symes leads the group and is the paper’s corresponding author. He said: “Sonochemistry is a technique which is only just starting to realise its full potential as sophisticated ultrasound technology becomes more affordable and researchers around the world are more readily able to explore what it can do. This paper is a robust demonstration of ultrasound’s potential to clean up our waterways, which could help reduce the health impacts of BPA.

“Ultrasound won’t replace conventional sewage treatment – those 120-year-old systems work fine for regular sewage and they’re cheap. But we’re going to see an increasing need for new solutions for targeted applications, particularly for these sorts of toxins. That’s where ultrasound can really excel because the conditions inside those tiny bubbles are literally out of this world, yet we can stand right next to the process and watch the degradation happen without any protective equipment.”

The team say they are now working to scale up their laboratory prototype to handle larger volumes of water, as well as continuing to explore the potential of ultrasound to remove a wider variety of pollutants from contaminated water.

Dr Zeliha Ertekin also co-authored the paper, titled ‘Sonochemical degradation of bisphenol A: A synergistic dual-frequency ultrasound approach’, which is published in Ultrasonics Sonochemistry.

The research was supported by funding from the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society and the University of Glasgow.



Source link

BPA Effectively remove System Ultrasound water
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleThe ROI Assessment: The Cost Impact of Indirect Labor
Next Article How to Use Video Overviews in NotebookLM
Editor-In-Chief
  • Website

Related Posts

Green Technology

Dual-layer system intercepts most micro- and nanoplastics from landfil…

January 13, 2026
Nanotechnology

This strange form of water may power giant planets’ magnetic fields

January 13, 2026
Green Technology

Is Pota Keto Bakery Good for Weight Loss? Honest Review

January 12, 2026
Add A Comment
Leave A Reply Cancel Reply

Top Posts

New IPA president Karen Martin delivers rousing call to creative actio…

April 1, 2025124 Views

100+ TikTok Statistics Updated for December 2024

December 4, 2024116 Views

How to Fix Cant Sign in Apple Account, Verification Code Not Received …

February 11, 202586 Views
Stay In Touch
  • Facebook
  • YouTube
  • TikTok
  • WhatsApp
  • Twitter
  • Instagram
Latest Reviews

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
About Us

Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

Our Picks

Voice and data services down for many customers

January 14, 2026

Juniper Research releases emerging IoT trends report for 2026 Internet…

January 14, 2026

Apple Picking Google Gemini to Power Siri Was About Buying Time

January 14, 2026

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Thelinkx.All Rights Reserved Designed by Prince Ayaan

Type above and press Enter to search. Press Esc to cancel.