Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

What you need to know about the sold-out system as June 5 release date…

May 14, 2025

Webinar: Why clean construction doesn’t equal costly construction

May 14, 2025

Toyota North America in court over data sharing Internet of Things New…

May 14, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Operando X-ray characterization platform to unravel catalyst degradati…
Nanotechnology

Operando X-ray characterization platform to unravel catalyst degradati…

Editor-In-ChiefBy Editor-In-ChiefMay 4, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Operando X-ray characterization platform to unravel catalyst degradati…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article 

    Google Scholar
     

  • Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article 

    Google Scholar
     

  • Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article 
    CAS 

    Google Scholar
     

  • de Sousa, L., Benes, N. E. & Mul, G. Evaluating the effects of membranes, cell designs, and flow configurations on the performance of Cu-GDEs in converting CO2 to CO. ACS EST Eng. 2, 2034–2042 (2022).

    Article 

    Google Scholar
     

  • Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article 

    Google Scholar
     

  • Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. et al. Sequential *CO management via controlling in situ reconstruction for efficient industrial-current-density CO2-to-C2+ electroreduction. Proc. Natl Acad. Sci. USA 120, e2302851120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Article 

    Google Scholar
     

  • Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nwabara, U. O. et al. Towards accelerated durability testing protocols for CO2 electrolysis. J. Mater. Chem. A 8, 22557–22571 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Popović, S. et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped opportunities. ACS Catal. 12, 1037–1051 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. The capping agent is the key: structural alterations of Ag NPs during CO2 electrolysis probed in a zero-gap gas-flow configuration. J. Catal. 404, 371–382 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 16, 1631–1643 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Moss, A. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2022).

    Article 

    Google Scholar
     

  • Martens, I., Chattot, R. & Drnec, J. Decoupling catalyst aggregation, ripening, and coalescence processes inside operating fuel cells. J. Power Sources 521, 230851 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dorofeev, G. A., Streletskii, A. N., Povstugar, I. V., Protasov, A. V. & Elsukov, E. P. Determination of nanoparticle sizes by X-ray diffraction. Colloid J. 74, 675–685 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Martens, I. et al. X-ray transparent proton-exchange membrane fuel cell design for in situ wide and small angle scattering tomography. J. Power Sources 437, 226906 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Aßmann, P., Gago, A. S., Gazdzicki, P., Friedrich, K. A. & Wark, M. Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Curr. Opin. Electrochem. 21, 225–233 (2020).

    Article 

    Google Scholar
     

  • Li, D. et al. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Disch, J., Bohn, L., Metzler, L. & Vierrath, S. Strategies for the mitigation of salt precipitation in zero-gap CO2 electrolyzers producing CO. J. Mater. Chem. A 11, 7344–7357 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Joensen, B. Ó. et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8, 1754–1771 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. Rigorous evaluation of liquid products in high-rate CO2/CO electrolysis. ACS Energy Lett. 7, 2595–2601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Enriching surface-accessible CO2 in the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew. Chem. Int. Ed. 62, e202214383 (2022).

    Article 

    Google Scholar
     

  • Zeradjanin, A. R., Narangoda, P., Spanos, I., Masa, J. & Schlögl, R. How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts? Curr. Opin. Electrochem. 30, 100797 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Graedel, T. E. Corrosion mechanisms for silver exposed to the atmosphere. J. Electrochem. Soc. 139, 1963 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Sachan, R. et al. Oxidation-resistant silver nanostructures for ultrastable plasmonic applications. Adv. Mater. 25, 2045–2050 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Back, S., Yeom, M. S. & Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089–5096 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clark, E. L. et al. Influence of atomic surface structure on the activity of Ag for the electrochemical reduction of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Simultaneous SAXS/WAXS/UV–vis study of the nucleation and growth of nanoparticles: a test of classical nucleation theory. Langmuir 31, 11678–11691 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cofell, E. R. et al. Potential cycling of silver cathodes in an alkaline CO2 flow electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Energy Mater. 5, 12013–12021 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moss, A. et al. Versatile high energy X-ray transparent electrolysis cell for operando measurements. J. Power Sources 562, 232754 (2022).

    Article 

    Google Scholar
     

  • Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieffer, J. & Karkoulis, D. PyFAI, a versatile library for azimuthal regrouping. J. Phys. Conf. Ser. 425, 202012 (2013).

    Article 

    Google Scholar
     

  • Jinschek, J. R. & Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156–1168 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    catalyst characterization degradati.. Electrocatalysis general Materials Science Nanoparticles Nanotechnology Nanotechnology and Microengineering Operando Platform unravel Xray
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThere’s a new opportunity for Apple to bring back a unique product tha…
    Next Article NASA’s TRACERS Mission Rescheduled for 2025 to Explore Solar Wind and …
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Paddle-like self-stirring nanoreactors with multi-chambered mesoporous…

    May 13, 2025
    Nanotechnology

    Evidence for a superconducting gap emerges in hydrogen sulphides – Phy…

    May 12, 2025
    Nanotechnology

    Seaborough and Luminus Devices Announce Partnership to Bring the World…

    May 11, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202462 Views

    10 Ads That Struck a Cultural Nerve in 2024

    December 30, 202412 Views

    The Top 10 Coffee Franchises in 2024

    November 21, 202412 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    What you need to know about the sold-out system as June 5 release date…

    May 14, 2025

    Webinar: Why clean construction doesn’t equal costly construction

    May 14, 2025

    Toyota North America in court over data sharing Internet of Things New…

    May 14, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.