Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

September 27, 2025

Study presents blueprint for hydrogen-powered UAVs

September 27, 2025

Your Autonomous Construction Business – Connected World

September 27, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Nanoparticle and microparticle-based systems for enhanced oral insulin…
Nanotechnology

Nanoparticle and microparticle-based systems for enhanced oral insulin…

Editor-In-ChiefBy Editor-In-ChiefDecember 30, 2024No Comments23 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Nanoparticle and microparticle-based systems for enhanced oral insulin…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Disease, N.I.o.D.a.D.a.K. What is diabetes? 2023 [cited 2023 October 20]; Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes.

  • Zhang S, Staples AE. Microfluidic-based systems for the management of diabetes. Drug Deliv Transl Res. 2024;14:2989.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saeedi P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2019;157: 107843.

    Article 
    PubMed 

    Google Scholar
     

  • Saeedi P, et al. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2020;162: 108086.

    Article 
    PubMed 

    Google Scholar
     

  • Mobasseri M, et al. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10(2):98–115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collaborators GD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: asystematic analysis for the Global Burden of Disease Study 2021. The Lancet. 2023;402(10397):31.


    Google Scholar
     

  • Di Pietrantonio N, et al. Role of epigenetics and metabolomics in predicting endothelial dysfunction in type 2 diabetes. Adv Biol (Weinh). 2023;7(9): e2300172.

    Article 
    PubMed 

    Google Scholar
     

  • Nørlev JTD, et al. Quantification of insulin adherence in adults with insulin-treated type 2 diabetes: a systematic review. Diabetes Metab Syndr. 2023;17(12): 102908.

    Article 
    PubMed 

    Google Scholar
     

  • Li SH, et al. Metal-polyphenol microgels for oral delivery of puerarin to alleviate the onset of diabetes. Drug Deliv Transl Res. 2024;14(3):757–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan SY, et al. Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 2019;13(1):364–72.

    Article 
    PubMed 

    Google Scholar
     

  • Yoon J-W, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002;8(2):6.

    Article 

    Google Scholar
     

  • Kono TM, et al. Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: analysis of hASC-derived paracrine effectors. Stem Cells. 2014;32(7):1831–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sher EK, et al. Novel therapeutical approaches based on neurobiological and genetic strategies for diabetic polyneuropathy—a review. Diabetes Metab Syndr. 2023;17(11): 102901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Maalouf IR, Capoccia K, Priefer R. Non-invasive ways of administering insulin. Diabetes Metab Syndr. 2022;16(4): 102478.

    Article 
    PubMed 

    Google Scholar
     

  • Lopes M, et al. Why most oral insulin formulations do not reach clinical trials. Ther Deliv. 2015;6(8):973–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora S, et al. Early detection of cutaneous complications of insulin therapy in type 1 and type 2 diabetes mellitus. Prim Care Diabetes. 2021;15(5):859–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson T, Kerr D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am J Clin Dermatol. 2003;4(10):661–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hammad RW, et al. Cubosomal functionalized block copolymer platform for dual delivery of linagliptin and empagliflozin: recent advances in synergistic strategies for maximizing control of high-risk type II diabetes. Drug Deliv Transl Res. 2024;14(3):678–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trief PM, et al. Incorrect insulin administration: a problem that warrants attention. Clin Diabetes. 2016;34(1):25–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet J. 2018;391(10138):2449–62.

    Article 

    Google Scholar
     

  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article 
    PubMed 

    Google Scholar
     

  • Pandey V, et al. Chapter 18—excipient toxicity and safety. In: Tekade RK, editor., et al., Pharmacokinetics and toxicokinetic considerations. New York: Academic Press; 2022. p. 487–511.

    Chapter 

    Google Scholar
     

  • Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Curr Pathobiol Rep. 2021;9(4):133–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gil AG, et al. Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem Toxicol. 2017;106(Pt A):477–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harugade A, Sherje A, Pethe A. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React Funct Polym. 2023;1991.

  • Wang W, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, et al. Chitosan-microcapsulated insulin alleviates mesenteric microcirculation dysfunction via modulating COX-2 and VCAM-1 expression in rats with diabetes mellitus. Int J Nanomed. 2018;13:6829–37.

    Article 
    CAS 

    Google Scholar
     

  • Tian H, et al. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater. 2018;7(17): e1800285.

    Article 
    PubMed 

    Google Scholar
     

  • Agrawal A, et al. Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015;5:105179–93.

    Article 
    CAS 

    Google Scholar
     

  • Papakostidis C, Giannoudis PV. Meta-analysis. What have we learned? Injury. 2023;54(Suppl 3):S30–4.

    Article 
    PubMed 

    Google Scholar
     

  • Wang XM, et al. A brief introduction of meta-analyses in clinical practice and research. J Gene Med. 2021;23(5): e3312.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng T, et al. Rational design of oral delivery nanosystems for hypoglycemic peptides. Nano Today. 2023;53: 102031.

    Article 
    CAS 

    Google Scholar
     

  • Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan RL, et al. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121(Pt 1):1027–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyatt GH, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64(4):395–400.

    Article 
    PubMed 

    Google Scholar
     

  • Ouzzani M, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiloke C, Phulukdaree A, Chuturgoon AA. The chemotherapeutic potential of gold nanoparticles against human carcinomas: a review. In: Andrew W, editor. Nanoarchitectonics for smart delivery and drug targeting. New York: Elsevier; 2016. p. 783–811.

    Chapter 

    Google Scholar
     

  • Badwaik H, et al. Phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical aspects. In: Studies in natural products chemistry. New York: Elsevier; 2019. p. 415–60.


    Google Scholar
     

  • ImageJ. [cited 01/07/2024; Available from: https://imagej.net/ij/.

  • The jamovi project. jamovi (Version 2.3) [Computer Software]. Available from: https://www.jamovi.org.

  • Cochrane.org. Chapter 10: Analysing data and undertaking meta-analyses. 2024; Available from: https://training.cochrane.org/handbook/current/chapter-10.

  • Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107(44):776–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeturu K, Srinivasa Rao ASR, Rao CR. Chapter 3—Machine learning algorithms, applications, and practices in data science. In: Principles and methods for data science. New York: Elsevier; 2020. p. 81–206.

    Chapter 

    Google Scholar
     

  • Hooijmans CR, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raguraman V, Jayasri MA, Suthindhiran K. Magnetosome mediated oral Insulin delivery and its possible use in diabetes management. J Mater Sci Mater Med. 2020;31(8):75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, et al. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Theranostics. 2021;11(9):4452–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, et al. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):278–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng J, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, et al. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin delivery. Polym Chem. 2016;7:3189–99.

    Article 
    CAS 

    Google Scholar
     

  • Sheng J, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun S, et al. Multifunctional composite microcapsules for oral delivery of insulin. Int J Mol Sci. 2016;18(1):54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim KS, et al. Immense insulin intestinal uptake and lymphatic transport using bile acid conjugated partially uncapped liposome. Mol Pharm. 2018;15(10):4756–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JU, et al. Optimization of phytic acid-crosslinked chitosan microspheres for oral insulin delivery using response surface methodology. Int J Pharm. 2020;588: 119736.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alibolandi M, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J Control Release. 2016;227:58–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Remawi M, et al. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm Dev Technol. 2017;22(3):390–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaral M, et al. How can biomolecules improve mucoadhesion of oral insulin? A comprehensive insight using. Biomolecules. 2020;10(5):675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai Y, et al. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. J Mater Chem B. 2020;8(13):2636–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balabushevich NG, et al. Layer-by-layer adsorption of biopolyelectrolytes as a universal approach to fabrication of protein-loaded microparticles. Moscow University Chemistry Bulletin. 2014.

  • Chen T, et al. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul. 2019;36(1):96–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, et al. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 2019;562:23–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho HJ, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsayed AM, et al. Low molecular weight chitosan–insulin complexes solubilized in a mixture of self-assembled labrosol and plurol oleaque and their glucose reduction activity in rats. Mar Drugs. 2018;16(1):32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Leithy ES, Abdel-Bar HM, Ali RA. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm. 2019;571: 118708.

    Article 
    PubMed 

    Google Scholar
     

  • Fang Y, et al. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: optimized preparation, characterization, and in vivo evaluation. J Pharm Sci. 2019;108(9):2994–3002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He H, et al. VB12-coated Gel-Core-SLN containing insulin: another way to improve oral absorption. Int J Pharm. 2015;493(1–2):451–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Z, et al. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale. 2018;10(7):3307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Wang J, Qiu L. Polymeric nano-vesicles via intermolecular action to load and orally deliver insulin with enhanced hypoglycemic effect. RSC Adv. 2020;10(13):7887–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inchaurraga L, et al. Zein-based nanoparticles for the oral delivery of insulin. Drug Deliv Transl Res. 2020;10(6):1601–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, et al. Chitosan modified cerasomes incorporating poly (vinyl pyrrolidone) for oral insulin delivery. RSC Adv. 2014;4:58137–44.

    Article 
    CAS 

    Google Scholar
     

  • Kassem M, et al. Formulation, characterization and in vivo application of oral insulin nanotechnology using different biodegradable polymers: advanced drug delivery system. Int J Pharm Sci Res. 2018;9:3664–77.

    CAS 

    Google Scholar
     

  • Kumari Y, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2020;149:976–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JH, et al. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug. Biomaterials. 2016;103:160–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SH, et al. Enhanced oral delivery of insulin via the colon-targeted nanocomposite system of organoclay/glycol chitosan/Eudragit. J Nanobiotechnol. 2020;18(1):104.

    Article 
    CAS 

    Google Scholar
     

  • Li X, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, et al. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm Sin B. 2022;12(3):1460–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, et al. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomed. 2016;11:761–9.

    Article 
    CAS 

    Google Scholar
     

  • Liu C, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv. 2016;23(6):2015–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomater Sci Eng. 2018;4(8):2889–902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, et al. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6(4):593–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors. Biomater Sci. 2021;9(8):2903–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes M, et al. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm. 2017;113:88–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-López AL, et al. Arabinoxylans-based oral insulin delivery system targeting the colon: simulation in a human intestinal microbial ecosystem and evaluation in diabetic rats. Pharmaceuticals (Basel). 2022;15(9):1062.

    Article 
    PubMed 

    Google Scholar
     

  • Mudassir J, et al. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. Int J Nanomed. 2019;14:4895–909.

    Article 
    CAS 

    Google Scholar
     

  • Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol. 2021;26(2):157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm. 2017;67(2):149–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao R, et al. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater Sci. 2021;9(3):685–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reboredo C, et al. Zein-based nanoparticles as oral carriers for insulin delivery. Pharmaceutics. 2021;14(1):39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rekha MR, Sharma C. Simultaneous effect of thiolation and carboxylation of chitosan particles towards mucoadhesive oral insulin delivery applications: an in vitro and in vivo evaluation. J Biomed Nanotechnol. 2015;11:11.

    Article 

    Google Scholar
     

  • Shan W, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano. 2015;9(3):2345–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Situ W, et al. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. J Agric Food Chem. 2015;63(16):4138–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonia TA, Sharma CP. pH sensitive thiolated cationic hydrogel for oral insulin delivery. J Biomed Nanotechnol. 2014;10(4):642–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhakar S, et al. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol. 2020;150:281–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun L, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym Chem. 2014;5:1999–2009.

    Article 
    CAS 

    Google Scholar
     

  • Sun L, et al. Scalable manufacturing of enteric encapsulation systems for site-specific oral insulin delivery. Biomacromol. 2019;20(1):528–38.

    Article 
    CAS 

    Google Scholar
     

  • Tan X, et al. Hydrophilic and electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm. 2020;17(9):3177–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urimi D, et al. Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech. 2019;20(3):131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma A, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016;31:288–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, et al. pH-responsive and mucoadhesive nanoparticles for enhanced oral insulin delivery: the effect of hyaluronic acid with different molecular weights. Pharmaceutics. 2023;15(3):820.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu S, et al. A delivery system for oral administration of proteins/peptides through bile acid transport channels. J Pharm Sci. 2019;108(6):2143–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing L, et al. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. J Mater Chem B. 2021;9(6):1707–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang ZH, et al. N-octyl-N-Arginine chitosan micelles as an oral delivery system of insulin. J Biomed Nanotechnol. 2013;9(4):601–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang P, et al. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 2015;496(2):993–1005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, et al. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B. 2018;6(45):7451–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, et al. Multifunctional nanoparticles enable efficient oral delivery of biomacromolecules via improving payload stability and regulating the transcytosis pathway. ACS Appl Mater Interfaces. 2018;10(40):34039–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, et al. A nanocomposite vehicle based on metal–organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl Mater Interfaces. 2020;12(20):22581–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou S, et al. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol Pharm. 2020;17(1):239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, et al. Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation. J Nanobiotechnol. 2020;18(1):96.

    Article 
    CAS 

    Google Scholar
     

  • Chaturvedi K, et al. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine (Lond). 2015;10(10):1569–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale. 2018;10(3):1494–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu XB, et al. Phospholipid complex based nanoemulsion system for oral insulin delivery: preparation, in vitro, and in vivo evaluations. Int J Nanomed. 2019;14:3055–67.

    Article 
    CAS 

    Google Scholar
     

  • Wu L, et al. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release. 2017;262:273–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, et al. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release. 2020;323:151–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int J Pharm. 2013;454(1):278–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. A strategy for developing effective orally-delivered nanoparticles through modulation of the surface “hydrophilicity/hydrophobicity balance.” J Mater Chem B. 2017;5(6):1302–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, et al. Cholesterol moieties as building blocks for assembling nanoparticles to achieve effective oral delivery of insulin. Biomater Sci. 2020;8(14):3979–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guha A, et al. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation. Drug Deliv. 2016;23(9):3552–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia X, et al. Multi-functional self-assembly nanoparticles originating from small molecule natural product for oral insulin delivery through modulating tight junctions. J Nanobiotechnol. 2022;20(1):116.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, et al. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromol. 2018;19(6):2123–36.

    Article 
    CAS 

    Google Scholar
     

  • Morales-Burgos AM, et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery. Eur J Pharm Biopharm. 2021;163:16–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Situ W, et al. Resistant starch film-coated microparticles for an oral colon-specific polypeptide delivery system and its release behaviors. J Agric Food Chem. 2014;62(16):3599–609.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Z, et al. Scalable production of therapeutic protein nanoparticles using flash nanoprecipitation. Adv Healthc Mater. 2019;8(6): e1801010.

    Article 
    PubMed 

    Google Scholar
     

  • Turner PV, et al. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovshova T, et al. Optimization of methods for determination of the encapsulation efficiency of doxorubicin in the nanoparticles based on poly(lactic-co-glycolic acid) (PLGA). Drug Dev Regis. 2020;9:113–8.

    Article 
    CAS 

    Google Scholar
     

  • Kamelnia R, et al. Improving the stability of insulin through effective chemical modifications: a comprehensive review. Int J Pharm. 2024;661: 124399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfatama M, et al. A comprehensive review of oral chitosan drug delivery systems: applications for oral insulin delivery. Nanotechnol Rev. 2024;13(1):20230205.

    Article 
    CAS 

    Google Scholar
     

  • Caturano A, et al. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel). 2024;17(7):945.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhumkar DR, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloomgarden Z. Novel approaches to the treatment of type 1 diabetes. J Diabetes. 2022;14(11):724–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol. 2021;33(4): e12941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dube S, et al. Assessment of insulin action on carbohydrate metabolism: physiological and non-physiological methods. Diabet Med. 2013;30(6):664–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeva-Andany MM, et al. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco NH. Animal experiments in biomedical research: a historical perspective. Animals (Basel). 2013;3(1):238–73.

    Article 
    PubMed 

    Google Scholar
     

  • Scridon A, et al. Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes / Sobolanii Wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai relevante caracteristici clinice, biochimice si hematologice ale diabetului uman. Revista Romana de Medicina de Laborator. 2015. 23.

  • Nagy G, et al. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes. 2022;13(10):835–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkel L, et al. Fetal programming of the endocrine pancreas: impact of a maternal low-protein diet on gene expression in the perinatal rat pancreas. Int J Mol Sci. 2022;23:11057. https://doi.org/10.3390/ijms231911057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: age and body weight matter. EXCLI J. 2021;20:1431–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iannaccone PM, Jacob HJ. Rats! Dis Model Mech. 2009;2(5–6):206–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D. Advantages and disadvantages of different insulin administration methods for the treatment of diabetes. Adv Humanit Res. 2023;3:311–5.


    Google Scholar
     

  • Wang M, et al. Versatile oral insulin delivery nanosystems: from materials to nanostructures. Int J Mol Sci. 2022;23(6):3362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes–future perspectives. Int J Pharm. 2013;440(1):48–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain KK. An overview of drug delivery systems. Methods Mol Biol. 2020;2059:1–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals (Basel). 2020;13(10):307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter B, Neises G. “Human” insulin versus animal insulin in people with diabetes mellitus. Cochrane Database Syst Rev. 2005;2005(1): CD003816.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirst JA, et al. The need for randomization in animal trials: an overview of systematic reviews. PLoS ONE. 2014;9(6): e98856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahan BC, Rehal S, Cro S. Risk of selection bias in randomised trials. Trials. 2015;16:405.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danaei M, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang K, et al. Polymers and inorganic nanoparticles: a winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Toady. 2021;36: 101046.

    Article 
    CAS 

    Google Scholar
     

  • Biriukov D, Fibich P, Předota M. Zeta potential determination from molecular simulations. J Phys Chem C. 2020;124(5):3159–70.

    Article 
    CAS 

    Google Scholar
     

  • Eldridge JA, et al. Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure. J Colloid Interface Sci. 2014;429:45–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, et al. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release. 2023;353:699–712.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ACTTR. What Does “Span” of Particle Size Mean? 2020; Available from: https://www.acttr.com/en/en-faq/en-faq-particle-size-analyzer/411-en-faq-particle-span-meaning.html.

  • Liu Y, et al. Development of high-drug-loading nanoparticles. ChemPlusChem. 2020;85(9):2143–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankalapalli S, Kolapalli VR. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci. 2009;71(5):481–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankerfors C. Polyelectrolyte complexes: preparation, characterization, and use for control of wet and dry adhesion between surfaces. In: Chemical science and engineering. 2012, HTJ: Stockholm. p. 58.

  • Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target. 2021;29(4):365–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guadarrama-Escobar OR, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci. 2023;24(5):4289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, et al. Oral insulin delivery platforms: strategies to address the biological barriers. Angew Chem Int Ed Engl. 2020;59(45):19787–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langguth P, et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release. 1997;46(1–2):18.


    Google Scholar
     

  • Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23(3):351–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv. 2013;10(1):103–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikh R, et al. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci (Basel). 2018;6(4):116.

    CAS 
    PubMed 

    Google Scholar
     

  • Sousa de Almeida M, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meneguin AB, et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: a review. Carbohydr Polym. 2021;256: 117504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes MA, et al. Intestinal uptake of insulin nanoparticles: facts or myths? Curr Pharm Biotechnol. 2014;15(7):629–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barfar A, et al. Oral insulin delivery: a review on recent advancements and novel strategies. Curr Drug Deliv. 2024;21(6):887–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa C, et al. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci. 2020;8(12):3270–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saw PE, et al. Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 2019;19(9):5967–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020;237: 119827.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnol. 2024;22(1):354.

    Article 

    Google Scholar
     

  • Bikram M, et al. Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release. 2007;123(3):219–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter B, Bongaerts B, Metzendorf MI. Thermal stability and storage of human insulin. Cochrane Database Syst Rev. 2023;11(11):CD015385.

    PubMed 

    Google Scholar
     

  • Shorten PR, McMahon CD, Soboleva TK. Insulin transport within skeletal muscle transverse tubule networks. Biophys J. 2007;93(9):3001–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link FJ, Heng JYY. Unraveling the impact of pH on the crystallization of pharmaceutical proteins: a case study of human insulin. Cryst Growth Des. 2022;22(5):3024–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerklotz H. Interactions of surfactants with lipid membranes. Q Rev Biophys. 2008;41(3–4):205–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parsi K. Interaction of detergent sclerosants with cell membranes. Phlebology. 2015;30(5):306–15.

    Article 
    PubMed 

    Google Scholar
     

  • Venkatesan J, et al. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers (Basel). 2016;8(2):30.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Biotechnology Encapsulation percentage Enhanced Glucose blood decrease insulin.. microparticlebased Molecular Medicine Nano-microparticles nanoparticle Nanotechnology oral Oral delivery Particle size systems
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleScopely scores a billion downloads and $10B in revenue to date
    Next Article This Excellent Anker USB-C Nano Charger Is Just $30, but Not for Long
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    3D-printed carbon nanotube sensors show potential for smart health mon…

    September 27, 2025
    Nanotechnology

    Toxic waste could become the next clean energy breakthrough

    September 26, 2025
    Nanotechnology

    Quadruple synergistic amplification of ferroptosis for precision gliob…

    September 25, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202485 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202563 Views

    Cisco Automation Developer Days 2025

    February 10, 202522 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

    September 27, 2025

    Study presents blueprint for hydrogen-powered UAVs

    September 27, 2025

    Your Autonomous Construction Business – Connected World

    September 27, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.