Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

September 27, 2025

Study presents blueprint for hydrogen-powered UAVs

September 27, 2025

Your Autonomous Construction Business – Connected World

September 27, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Enhancing spectroscopy and microscopy with emerging methods in photon …
Nanotechnology

Enhancing spectroscopy and microscopy with emerging methods in photon …

Editor-In-ChiefBy Editor-In-ChiefAugust 27, 2025No Comments21 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Enhancing spectroscopy and microscopy with emerging methods in photon …
Share
Facebook Twitter LinkedIn Pinterest Email


  • Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cusini, I. et al. Historical perspectives, state of art and research trends of single photon avalanche diodes and their applications (Part 1: single pixels). Front. Phys. 10, 906675 (2022).


    Google Scholar
     

  • Cusini, I. et al. Historical perspectives, state of art and research trends of SPAD arrays and their applications (Part II: SPAD arrays). Front. Phys. 10, 906671 (2022).


    Google Scholar
     

  • Hadfield, R. H. et al. Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023).

    CAS 

    Google Scholar
     

  • You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673–2692 (2020).

    CAS 

    Google Scholar
     

  • Esmaeil et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502 (2021).


    Google Scholar
     

  • Lau, J. A., Verma, V. B., Schwarzer, D. & Wodtke, A. M. Superconducting single-photon detectors in the mid-infrared for physical chemistry and spectroscopy. Chem. Soc. Rev. 52, 921–941 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Anwar, A., Perumangatt, C., Steinlechner, F., Jennewein, T. & Ling, A. Entangled photon-pair sources based on three-wave mixing in bulk crystals. Rev. Sci. Instrum. 92, 041101 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).

    PubMed 

    Google Scholar
     

  • Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    CAS 

    Google Scholar
     

  • Achar, S., Kundu, A., Chilukoti, A. & Sharma, A. Single and entangled photon pair generation using atomic vapors for quantum communication applications. Front. Quantum Sci. Technol. 3, 1438340 (2024).


    Google Scholar
     

  • Ceccarelli, F. et al. Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4, 2000102 (2021).

    CAS 

    Google Scholar
     

  • Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).


    Google Scholar
     

  • Lubin, G. et al. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express 27, 32863 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lubin, G. et al. Heralded spectroscopy reveals exciton–exciton correlations in single colloidal quantum dots. Nano Lett. 21, 6756–6763 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szoke, S., He, M., Hickam, B. P. & Cushing, S. K. Designing high-power, octave spanning entangled photon sources for quantum spectroscopy. J. Chem. Phys. 154, 244201 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Sultanov, V. et al. Tunable entangled photon-pair generation in a liquid crystal. Nature 631, 294–299 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubin, G., Oron, D., Rossman, U., Tenne, R. & Yallapragada, V. J. Photon correlations in spectroscopy and microscopy. ACS Photonics 9, 2891–2904 (2022).

    CAS 

    Google Scholar
     

  • Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).


    Google Scholar
     

  • Meystre, P. Theoretical developments in cavity quantum optics: a brief review. Phys. Rep. 219, 243–262 (1992).


    Google Scholar
     

  • Srivathsan, B. et al. Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble. Phys. Rev. Lett. 111, 123602 (2013).

    PubMed 

    Google Scholar
     

  • David, A. & Miller, B. in Quantum Dynamics of Simple Systems (eds Oppo, G.-L. et al.) 239–266 (CRC Press, 2020); https://doi.org/10.1201/9781003072973-9

  • Bassett, L. C., Alkauskas, A., Exarhos, A. L. & Fu, K.-M. C. Quantum defects by design. Nanophotonics 8, 1867–1888 (2019).

    CAS 

    Google Scholar
     

  • Hohenester, U. Nano and Quantum Optics: An Introduction to Basic Principles and Theory (Springer, 2019).

  • Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).

    CAS 

    Google Scholar
     

  • Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    CAS 

    Google Scholar
     

  • Hollars, C. W., Lane, S. M. & Huser, T. Controlled non-classical photon emission from single conjugated polymer molecules. Chem. Phys. Lett. 370, 393–398 (2003).

    CAS 

    Google Scholar
     

  • Kumar, P. et al. Photon antibunching from oriented semiconducting polymer nanostructures. J. Am. Chem. Soc. 126, 3376–3377 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    CAS 

    Google Scholar
     

  • Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koley, S. et al. Photon correlations in colloidal quantum dot molecules controlled by the neck barrier. Matter 5, 3997–4014 (2022).

    CAS 

    Google Scholar
     

  • Zhu, H. et al. One-dimensional highly-confined CsPbBr3 nanorods with enhanced stability: synthesis and spectroscopy. Nano Lett. 22, 8355–8362 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 11, 9119–9127 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Mangum, B. D. et al. Influence of the core size on biexciton quantum yield of giant CdSe/CdS nanocrystals. Nanoscale 6, 3712–3720 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    PubMed 

    Google Scholar
     

  • Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Dräbenstedt, A. et al. Low-temperature microscopy and spectroscopy on single defect centers in diamond. Phys. Rev. B 60, 11503–11508 (1999).


    Google Scholar
     

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    CAS 

    Google Scholar
     

  • Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning. Nat. Phys. 20, 836–842 (2024).

    CAS 

    Google Scholar
     

  • Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).


    Google Scholar
     

  • Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level systems: superfluorescence. II. Phys. Rev. A 12, 587–598 (1975).


    Google Scholar
     

  • Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).


    Google Scholar
     

  • Fidder, H., Knoester, J. & Wiersma, D. A. Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171, 529–536 (1990).

    CAS 

    Google Scholar
     

  • Lim, S.-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004).

    PubMed 

    Google Scholar
     

  • Meinardi, F., Cerminara, M., Sassella, A., Bonifacio, R. & Tubino, R. Superradiance in molecular H aggregates. Phys. Rev. Lett. 91, 247401 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. Z., Zheng, X. G., Zhao, F. L., Gao, Z. L. & Yu, Z. X. Superradiance of high density frenkel excitons at room temperature. Phys. Rev. Lett. 74, 4079–4082 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997).

    CAS 

    Google Scholar
     

  • Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    CAS 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Super-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett. 18, 4734–4740 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. New insights into the multiexciton dynamics in phase-pure thick-shell CdSe/CdS quantum dots. J. Phys. Chem. C 122, 25059–25066 (2018).

    CAS 

    Google Scholar
     

  • Zhu, C. et al. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 626, 535–541 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, K. et al. Room-temperature upconverted superfluorescence. Nat. Photon. 16, 737–742 (2022).

    CAS 

    Google Scholar
     

  • Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    PubMed 

    Google Scholar
     

  • Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    CAS 

    Google Scholar
     

  • Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).

    CAS 

    Google Scholar
     

  • Schedlbauer, J. et al. Tracking exciton diffusion and exciton annihilation in single nanoparticles of conjugated polymers by photon correlation spectroscopy. Adv. Opt. Mater. 10, 2200092 (2022).

    CAS 

    Google Scholar
     

  • Hofkens, J. et al. Revealing competitive Förster-type resonance energy-transfer pathways in single bichromophoric molecules. Proc. Natl Acad. Sci. USA 100, 13146–13151 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernard, J., Fleury, L., Talon, H. & Orrit, M. Photon bunching in the fluorescence from single molecules: a probe for intersystem crossing. J. Chem. Phys. 98, 850–859 (1993).

    CAS 

    Google Scholar
     

  • Hedley, G. J. et al. Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nat. Commun. 12, 1327 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, M. J., Glancy, S., Nam, S. W. & Mirin, R. P. Third-order antibunching from an imperfect single-photon source. Opt. Express 22, 3244 (2014).

    PubMed 

    Google Scholar
     

  • Rundquist, A. et al. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A 90, 023846 (2014).


    Google Scholar
     

  • Amgar, D., Yang, G., Tenne, R. & Oron, D. Higher-order photon correlation as a tool to study exciton dynamics in quasi-2D nanoplatelets. Nano Lett. 19, 8741–8748 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenkel, N. et al. Two biexciton types coexisting in coupled quantum dot molecules. ACS Nano 17, 14990–15000 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubin, G. et al. Resolving the controversy in biexciton binding energy of cesium lead halide perovskite nanocrystals through heralded single-particle spectroscopy. ACS Nano 15, 19581–19587 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27, 35279 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Oripov, B. G. et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622, 730–734 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Pei, J., Yang, J., Yildirim, T., Zhang, H. & Lu, Y. Many-body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019).


    Google Scholar
     

  • Gu, B. & Mukamel, S. Photon correlation signals in coupled-cavity polaritons created by entangled light. ACS Photonics 9, 938–943 (2022).

    CAS 

    Google Scholar
     

  • Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 18, 18875 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sroda, A. et al. SOFISM: super-resolution optical fluctuation image scanning microscopy. Optica 7, 1308 (2020).


    Google Scholar
     

  • Zhao, G., Zheng, C., Kuang, C. & Liu, X. Resolution-enhanced SOFI via structured illumination. Opt. Lett. 42, 3956 (2017).

    PubMed 

    Google Scholar
     

  • Schwartz, O. & Oron, D. Improved resolution in fluorescence microscopy using quantum correlations. Phys. Rev. A 85, 033812 (2012).


    Google Scholar
     

  • Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    CAS 

    Google Scholar
     

  • Chen, Y., Tsao, C., Cobb-Bruno, C. & Utzat, H. Stochastic frequency fluctuation super-resolution imaging. Opt. Express 33, 6514–6525 (2025).

    PubMed 

    Google Scholar
     

  • Meuret, S. et al. Nanoscale relative emission efficiency mapping using cathodoluminescence g(2) imaging. Nano Lett. 18, 2288–2293 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tizei, L. H. G. & Kociak, M. Spatially resolved quantum nano-optics of single photons using an electron microscope. Phys. Rev. Lett. 110, 153604 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Meuret, S. et al. Lifetime measurements well below the optical diffraction limit. ACS Photonics 3, 1157–1163 (2016).

    CAS 

    Google Scholar
     

  • Yanagimoto, S. et al. Time-correlated electron and photon counting microscopy. Commun. Phys. 6, 260 (2023).


    Google Scholar
     

  • Rosławska, A. et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanagimoto, S., Yamamoto, N., Yuge, T., Sannomiya, T. & Akiba, K. Unveiling the nature of cathodoluminescence from photon statistics. Commun. Phys. 8, 56 (2025).


    Google Scholar
     

  • Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kazakevich, E., Aharon, H. & Kfir, O. Spatial electron-photon entanglement. Phys. Rev. Res. 6, 043033 (2024).

    CAS 

    Google Scholar
     

  • Harper, N., Hickam, B. P., He, M. & Cushing, S. K. Entangled photon correlations allow a continuous-wave laser diode to measure single-photon, time-resolved fluorescence. J. Phys. Chem. Lett. 14, 5805–5811 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Eshun, A. et al. Fluorescence lifetime measurements using photon pair correlations generated via spontaneous parametric down conversion (SPDC). Opt. Express 31, 26935 (2023).

    PubMed 

    Google Scholar
     

  • Li, Q. et al. Single-photon absorption and emission from a natural photosynthetic complex. Nature 619, 300–304 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eshun, A., Varnavski, O., Villabona-Monsalve, J. P., Burdick, R. K. & Goodson, T. I. Entangled photon spectroscopy. Acc. Chem. Res. 55, 991–1003 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hickam, B. P., He, M., Harper, N., Szoke, S. & Cushing, S. K. Single-photon scattering can account for the discrepancies among entangled two-photon measurement techniques. J. Phys. Chem. Lett. 13, 4934–4940 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Varnavski, O. & Goodson, T. I. Two-photon fluorescence microscopy at extremely low excitation intensity: the power of quantum correlations. J. Am. Chem. Soc. 142, 12966–12975 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett. 68, 2421–2424 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Ou, Z.-Y. J. Multi-Photon Quantum Interference (Springer, 2007); https://doi.org/10.1007/978-0-387-25554-5

  • Ryu, J., Cho, K., Oh, C.-H. & Kang, H. All-order dispersion cancellation and energy-time entangled state. Opt. Express 25, 1360 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Okano, M. et al. Dispersion cancellation in high-resolution two-photon interference. Phys. Rev. A 88, 043845 (2013).


    Google Scholar
     

  • Lyons, A. et al. Attosecond-resolution Hong–Ou–Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ndagano, B. et al. Quantum microscopy based on Hong–Ou–Mandel interference. Nat. Photon. 16, 384–389 (2022).

    CAS 

    Google Scholar
     

  • Dorfman, K. E., Asban, S., Gu, B. & Mukamel, S. Hong–Ou–Mandel interferometry and spectroscopy using entangled photons. Commun. Phys. 4, 49 (2021).


    Google Scholar
     

  • Kalashnikov, D. A. et al. Quantum interference in the presence of a resonant medium. Sci. Rep. 7, 11444 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eshun, A. et al. Investigations of molecular optical properties using quantum light and Hong–Ou–Mandel interferometry. J. Am. Chem. Soc. 143, 9070–9081 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    CAS 

    Google Scholar
     

  • Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049 (2015).

    CAS 

    Google Scholar
     

  • Padgett, M. J. & Boyd, R. W. An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. A 375, 20160233 (2017).


    Google Scholar
     

  • Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002).

    PubMed 

    Google Scholar
     

  • Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004).


    Google Scholar
     

  • Karmakar, S. & Shih, Y. Two-color ghost imaging with enhanced angular resolving power. Phys. Rev. A 81, 033845 (2010).


    Google Scholar
     

  • Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).

    PubMed 

    Google Scholar
     

  • Lopaeva, E. D. et al. Experimental realization of quantum illumination. Phys. Rev. Lett. 110, 153603 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons in the mid-infrared. Sci. Adv. 6, eabd0264 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).

    CAS 

    Google Scholar
     

  • Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    PubMed 

    Google Scholar
     

  • Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014).

    PubMed 

    Google Scholar
     

  • Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Kok, P. et al. Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001).


    Google Scholar
     

  • Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    PubMed 

    Google Scholar
     

  • Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997).


    Google Scholar
     

  • Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camphausen, R. et al. A quantum-enhanced wide-field phase imager. Sci. Adv. 7, eabj2155 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).

    CAS 

    Google Scholar
     

  • Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).

    CAS 

    Google Scholar
     

  • Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chu, X.-L., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photon. 11, 58–62 (2017).

    CAS 

    Google Scholar
     

  • Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    CAS 

    Google Scholar
     

  • Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).


    Google Scholar
     

  • Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995); https://doi.org/10.1017/CBO9781139644105

  • Steinhauer, S., Gyger, S. & Zwiller, V. Progress on large-scale superconducting nanowire single-photon detectors. Appl. Phys. Lett. 118, 100501 (2021).

    CAS 

    Google Scholar
     

  • Mueller, A. S. et al. Free-space coupled superconducting nanowire single-photon detector with low dark counts. Optica 8, 1586–1587 (2021).


    Google Scholar
     

  • Harper, N. A. et al. Highly efficient visible and near-IR photon pair generation with thin-film lithium niobate. Opt. Quantum 2, 103–109 (2024).


    Google Scholar
     

  • Cortes, C. L., Adhikari, S., Ma, X. & Gray, S. K. Accelerating quantum optics experiments with statistical learning. Appl. Phys. Lett. 116, 184003 (2020).

    CAS 

    Google Scholar
     

  • Kudyshev, Z. A. et al. Machine learning assisted quantum super-resolution microscopy. Nat. Commun. 14, 4828 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proppe, A. H. et al. Time-resolved line shapes of single quantum emitters via machine learned photon correlations. Phys. Rev. Lett. 131, 053603 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Lavoie, J. et al. Phase-modulated interferometry, spectroscopy, and refractometry using entangled photon pairs. Adv. Quantum Technol. 3, 1900114 (2020).

    CAS 

    Google Scholar
     

  • Yin, L. et al. Analysis of the spatial properties of correlated photon in collinear phase-matching. Photonics 8, 12 (2021).

    CAS 

    Google Scholar
     

  • Sansa Perna, A., Ortega, E., Gräfe, M. & Steinlechner, F. Visible-wavelength polarization-entangled photon source for quantum communication and imaging. Appl. Phys. Lett. 120, 074001 (2022).

    CAS 

    Google Scholar
     

  • Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    CAS 

    Google Scholar
     

  • Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Huber, D., Reindl, M., Aberl, J., Rastelli, A. & Trotta, R. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J. Opt. 20, 073002 (2018).


    Google Scholar
     

  • Kim, H., Park, H. S. & Choi, S.-K. Three-photon N00N states generated by photon subtraction from double photon pairs. Opt. Express 17, 19720 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, F. W., Ou, Z. Y. & Guo, G. C. Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength. Phys. Rev. A 73, 023808 (2006).


    Google Scholar
     

  • Sun, F. W., Liu, B. H., Huang, Y. F., Ou, Z. Y. & Guo, G. C. Observation of the four-photon de Broglie wavelength by state-projection measurement. Phys. Rev. A 74, 033812 (2006).


    Google Scholar
     

  • Liu, B. H. et al. Demonstration of the three-photon de Broglie wavelength by projection measurement. Phys. Rev. A 77, 023815 (2008).


    Google Scholar
     

  • Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Fuenzalida, J. et al. Resolution of quantum imaging with undetected photons. Quantum 6, 646 (2022).


    Google Scholar
     

  • Viswanathan, B., Barreto Lemos, G. & Lahiri, M. Resolution limit in quantum imaging with undetected photons using position correlations. Opt. Express 29, 38185 (2021).

    PubMed 

    Google Scholar
     

  • Dorfman, K. E., Schlawin, F. & Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016).


    Google Scholar
     

  • Ko, L., Cook, R. L. & Whaley, K. B. Dynamics of photosynthetic light harvesting systems interacting with N-photon Fock states. J. Chem. Phys. 156, 244108 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Roslyak, O., Marx, C. A. & Mukamel, S. Nonlinear spectroscopy with entangled photons: manipulating quantum pathways of matter. Phys. Rev. A 79, 033832 (2009).


    Google Scholar
     

  • Rodriguez-Camargo, C. D., Gestsson, H. O., Nation, C., Jones, A. R. & Olaya-Castro, A. Perturbation-theory approach for predicting vibronic selectivity by entangled-photon-pair absorption. Phys. Rev. A 111, 063101 (2025).

    CAS 

    Google Scholar
     

  • Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

  • Fox, M. Quantum Optics: An Introduction (Oxford Univ. Press, 2006).

  • Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals: Emended Edition (Dover Publications, 2010).

  • Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 3 (Addison Wesley, 1971).

  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Berchera, I. R. & Degiovanni, I. P. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology. Metrologia 56, 024001 (2019).

    CAS 

    Google Scholar
     

  • Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    CAS 

    Google Scholar
     

  • McCaughan, A. N. Readout architectures for superconducting nanowire single photon detectors. Supercond. Sci. Technol. 31, 040501 (2018).


    Google Scholar
     

  • McCaughan, A. N. et al. The thermally-coupled imager: a scalable readout architecture for superconducting nanowire single photon detectors. Appl. Phys. Lett. 121, 102602 (2022).

    CAS 

    Google Scholar
     



  • Source link

    Emerging Enhancing Fluorescence spectroscopy general Interference microscopy Materials Science Methods microscopy Nanotechnology Nanotechnology and Microengineering Photon spectroscopy
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe AI Hype Index: AI-designed antibiotics show promise
    Next Article Nvidia reports record sales as the AI boom continues
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    3D-printed carbon nanotube sensors show potential for smart health mon…

    September 27, 2025
    Nanotechnology

    Toxic waste could become the next clean energy breakthrough

    September 26, 2025
    Nanotechnology

    Quadruple synergistic amplification of ferroptosis for precision gliob…

    September 25, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202485 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202563 Views

    Cisco Automation Developer Days 2025

    February 10, 202522 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

    September 27, 2025

    Study presents blueprint for hydrogen-powered UAVs

    September 27, 2025

    Your Autonomous Construction Business – Connected World

    September 27, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.