Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).
Cusini, I. et al. Historical perspectives, state of art and research trends of single photon avalanche diodes and their applications (Part 1: single pixels). Front. Phys. 10, 906675 (2022).
Cusini, I. et al. Historical perspectives, state of art and research trends of SPAD arrays and their applications (Part II: SPAD arrays). Front. Phys. 10, 906671 (2022).
Hadfield, R. H. et al. Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023).
You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 9, 2673–2692 (2020).
Esmaeil et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502 (2021).
Lau, J. A., Verma, V. B., Schwarzer, D. & Wodtke, A. M. Superconducting single-photon detectors in the mid-infrared for physical chemistry and spectroscopy. Chem. Soc. Rev. 52, 921–941 (2023).
Anwar, A., Perumangatt, C., Steinlechner, F., Jennewein, T. & Ling, A. Entangled photon-pair sources based on three-wave mixing in bulk crystals. Rev. Sci. Instrum. 92, 041101 (2021).
Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).
Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).
Achar, S., Kundu, A., Chilukoti, A. & Sharma, A. Single and entangled photon pair generation using atomic vapors for quantum communication applications. Front. Quantum Sci. Technol. 3, 1438340 (2024).
Ceccarelli, F. et al. Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4, 2000102 (2021).
Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).
Lubin, G. et al. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express 27, 32863 (2019).
Lubin, G. et al. Heralded spectroscopy reveals exciton–exciton correlations in single colloidal quantum dots. Nano Lett. 21, 6756–6763 (2021).
Szoke, S., He, M., Hickam, B. P. & Cushing, S. K. Designing high-power, octave spanning entangled photon sources for quantum spectroscopy. J. Chem. Phys. 154, 244201 (2021).
Sultanov, V. et al. Tunable entangled photon-pair generation in a liquid crystal. Nature 631, 294–299 (2024).
Lubin, G., Oron, D., Rossman, U., Tenne, R. & Yallapragada, V. J. Photon correlations in spectroscopy and microscopy. ACS Photonics 9, 2891–2904 (2022).
Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).
Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).
Meystre, P. Theoretical developments in cavity quantum optics: a brief review. Phys. Rep. 219, 243–262 (1992).
Srivathsan, B. et al. Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble. Phys. Rev. Lett. 111, 123602 (2013).
David, A. & Miller, B. in Quantum Dynamics of Simple Systems (eds Oppo, G.-L. et al.) 239–266 (CRC Press, 2020); https://doi.org/10.1201/9781003072973-9
Bassett, L. C., Alkauskas, A., Exarhos, A. L. & Fu, K.-M. C. Quantum defects by design. Nanophotonics 8, 1867–1888 (2019).
Hohenester, U. Nano and Quantum Optics: An Introduction to Basic Principles and Theory (Springer, 2019).
Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).
Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).
Hollars, C. W., Lane, S. M. & Huser, T. Controlled non-classical photon emission from single conjugated polymer molecules. Chem. Phys. Lett. 370, 393–398 (2003).
Kumar, P. et al. Photon antibunching from oriented semiconducting polymer nanostructures. J. Am. Chem. Soc. 126, 3376–3377 (2004).
He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).
Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).
Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).
Koley, S. et al. Photon correlations in colloidal quantum dot molecules controlled by the neck barrier. Matter 5, 3997–4014 (2022).
Zhu, H. et al. One-dimensional highly-confined CsPbBr3 nanorods with enhanced stability: synthesis and spectroscopy. Nano Lett. 22, 8355–8362 (2022).
Ma, X. et al. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 11, 9119–9127 (2017).
Mangum, B. D. et al. Influence of the core size on biexciton quantum yield of giant CdSe/CdS nanocrystals. Nanoscale 6, 3712–3720 (2014).
Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294 (2000).
Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).
Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).
Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).
Dräbenstedt, A. et al. Low-temperature microscopy and spectroscopy on single defect centers in diamond. Phys. Rev. B 60, 11503–11508 (1999).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning. Nat. Phys. 20, 836–842 (2024).
Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).
Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level systems: superfluorescence. II. Phys. Rev. A 12, 587–598 (1975).
Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).
Fidder, H., Knoester, J. & Wiersma, D. A. Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171, 529–536 (1990).
Lim, S.-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004).
Meinardi, F., Cerminara, M., Sassella, A., Bonifacio, R. & Tubino, R. Superradiance in molecular H aggregates. Phys. Rev. Lett. 91, 247401 (2003).
Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).
Wang, H. Z., Zheng, X. G., Zhao, F. L., Gao, Z. L. & Yu, Z. X. Superradiance of high density frenkel excitons at room temperature. Phys. Rev. Lett. 74, 4079–4082 (1995).
Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997).
Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).
Kim, J.-H., Aghaeimeibodi, S., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Super-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett. 18, 4734–4740 (2018).
Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).
Zhang, L. et al. New insights into the multiexciton dynamics in phase-pure thick-shell CdSe/CdS quantum dots. J. Phys. Chem. C 122, 25059–25066 (2018).
Zhu, C. et al. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 626, 535–541 (2024).
Huang, K. et al. Room-temperature upconverted superfluorescence. Nat. Photon. 16, 737–742 (2022).
Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).
Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).
Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).
Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).
Schedlbauer, J. et al. Tracking exciton diffusion and exciton annihilation in single nanoparticles of conjugated polymers by photon correlation spectroscopy. Adv. Opt. Mater. 10, 2200092 (2022).
Hofkens, J. et al. Revealing competitive Förster-type resonance energy-transfer pathways in single bichromophoric molecules. Proc. Natl Acad. Sci. USA 100, 13146–13151 (2003).
Bernard, J., Fleury, L., Talon, H. & Orrit, M. Photon bunching in the fluorescence from single molecules: a probe for intersystem crossing. J. Chem. Phys. 98, 850–859 (1993).
Hedley, G. J. et al. Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nat. Commun. 12, 1327 (2021).
Stevens, M. J., Glancy, S., Nam, S. W. & Mirin, R. P. Third-order antibunching from an imperfect single-photon source. Opt. Express 22, 3244 (2014).
Rundquist, A. et al. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A 90, 023846 (2014).
Amgar, D., Yang, G., Tenne, R. & Oron, D. Higher-order photon correlation as a tool to study exciton dynamics in quasi-2D nanoplatelets. Nano Lett. 19, 8741–8748 (2019).
Frenkel, N. et al. Two biexciton types coexisting in coupled quantum dot molecules. ACS Nano 17, 14990–15000 (2023).
Lubin, G. et al. Resolving the controversy in biexciton binding energy of cesium lead halide perovskite nanocrystals through heralded single-particle spectroscopy. ACS Nano 15, 19581–19587 (2021).
Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27, 35279 (2019).
Oripov, B. G. et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622, 730–734 (2023).
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).
Pei, J., Yang, J., Yildirim, T., Zhang, H. & Lu, Y. Many-body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019).
Gu, B. & Mukamel, S. Photon correlation signals in coupled-cavity polaritons created by entangled light. ACS Photonics 9, 938–943 (2022).
Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).
Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 18, 18875 (2010).
Sroda, A. et al. SOFISM: super-resolution optical fluctuation image scanning microscopy. Optica 7, 1308 (2020).
Zhao, G., Zheng, C., Kuang, C. & Liu, X. Resolution-enhanced SOFI via structured illumination. Opt. Lett. 42, 3956 (2017).
Schwartz, O. & Oron, D. Improved resolution in fluorescence microscopy using quantum correlations. Phys. Rev. A 85, 033812 (2012).
Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).
Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).
Chen, Y., Tsao, C., Cobb-Bruno, C. & Utzat, H. Stochastic frequency fluctuation super-resolution imaging. Opt. Express 33, 6514–6525 (2025).
Meuret, S. et al. Nanoscale relative emission efficiency mapping using cathodoluminescence g(2) imaging. Nano Lett. 18, 2288–2293 (2018).
Tizei, L. H. G. & Kociak, M. Spatially resolved quantum nano-optics of single photons using an electron microscope. Phys. Rev. Lett. 110, 153604 (2013).
Meuret, S. et al. Lifetime measurements well below the optical diffraction limit. ACS Photonics 3, 1157–1163 (2016).
Yanagimoto, S. et al. Time-correlated electron and photon counting microscopy. Commun. Phys. 6, 260 (2023).
Rosławska, A. et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020).
Yanagimoto, S., Yamamoto, N., Yuge, T., Sannomiya, T. & Akiba, K. Unveiling the nature of cathodoluminescence from photon statistics. Commun. Phys. 8, 56 (2025).
Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
Kazakevich, E., Aharon, H. & Kfir, O. Spatial electron-photon entanglement. Phys. Rev. Res. 6, 043033 (2024).
Harper, N., Hickam, B. P., He, M. & Cushing, S. K. Entangled photon correlations allow a continuous-wave laser diode to measure single-photon, time-resolved fluorescence. J. Phys. Chem. Lett. 14, 5805–5811 (2023).
Eshun, A. et al. Fluorescence lifetime measurements using photon pair correlations generated via spontaneous parametric down conversion (SPDC). Opt. Express 31, 26935 (2023).
Li, Q. et al. Single-photon absorption and emission from a natural photosynthetic complex. Nature 619, 300–304 (2023).
Eshun, A., Varnavski, O., Villabona-Monsalve, J. P., Burdick, R. K. & Goodson, T. I. Entangled photon spectroscopy. Acc. Chem. Res. 55, 991–1003 (2022).
Hickam, B. P., He, M., Harper, N., Szoke, S. & Cushing, S. K. Single-photon scattering can account for the discrepancies among entangled two-photon measurement techniques. J. Phys. Chem. Lett. 13, 4934–4940 (2022).
Varnavski, O. & Goodson, T. I. Two-photon fluorescence microscopy at extremely low excitation intensity: the power of quantum correlations. J. Am. Chem. Soc. 142, 12966–12975 (2020).
Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett. 68, 2421–2424 (1992).
Ou, Z.-Y. J. Multi-Photon Quantum Interference (Springer, 2007); https://doi.org/10.1007/978-0-387-25554-5
Ryu, J., Cho, K., Oh, C.-H. & Kang, H. All-order dispersion cancellation and energy-time entangled state. Opt. Express 25, 1360 (2017).
Okano, M. et al. Dispersion cancellation in high-resolution two-photon interference. Phys. Rev. A 88, 043845 (2013).
Lyons, A. et al. Attosecond-resolution Hong–Ou–Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).
Ndagano, B. et al. Quantum microscopy based on Hong–Ou–Mandel interference. Nat. Photon. 16, 384–389 (2022).
Dorfman, K. E., Asban, S., Gu, B. & Mukamel, S. Hong–Ou–Mandel interferometry and spectroscopy using entangled photons. Commun. Phys. 4, 49 (2021).
Kalashnikov, D. A. et al. Quantum interference in the presence of a resonant medium. Sci. Rep. 7, 11444 (2017).
Eshun, A. et al. Investigations of molecular optical properties using quantum light and Hong–Ou–Mandel interferometry. J. Am. Chem. Soc. 143, 9070–9081 (2021).
Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging through noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).
Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum image distillation. Sci. Adv. 5, eaax0307 (2019).
Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015).
Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).
Aspden, R. S. et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1049 (2015).
Padgett, M. J. & Boyd, R. W. An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. A 375, 20160233 (2017).
Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002).
Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004).
Karmakar, S. & Shih, Y. Two-color ghost imaging with enhanced angular resolving power. Phys. Rev. A 81, 033845 (2010).
Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005).
Lopaeva, E. D. et al. Experimental realization of quantum illumination. Phys. Rev. Lett. 110, 153603 (2013).
Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).
Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons in the mid-infrared. Sci. Adv. 6, eabd0264 (2020).
Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).
Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).
Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).
Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).
Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014).
Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).
Kok, P. et al. Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001).
Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).
Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997).
Zhang, Y. et al. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).
Camphausen, R. et al. A quantum-enhanced wide-field phase imager. Sci. Adv. 7, eabj2155 (2021).
Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).
Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).
Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).
Chu, X.-L., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photon. 11, 58–62 (2017).
Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).
Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016).
Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995); https://doi.org/10.1017/CBO9781139644105
Steinhauer, S., Gyger, S. & Zwiller, V. Progress on large-scale superconducting nanowire single-photon detectors. Appl. Phys. Lett. 118, 100501 (2021).
Mueller, A. S. et al. Free-space coupled superconducting nanowire single-photon detector with low dark counts. Optica 8, 1586–1587 (2021).
Harper, N. A. et al. Highly efficient visible and near-IR photon pair generation with thin-film lithium niobate. Opt. Quantum 2, 103–109 (2024).
Cortes, C. L., Adhikari, S., Ma, X. & Gray, S. K. Accelerating quantum optics experiments with statistical learning. Appl. Phys. Lett. 116, 184003 (2020).
Kudyshev, Z. A. et al. Machine learning assisted quantum super-resolution microscopy. Nat. Commun. 14, 4828 (2023).
Proppe, A. H. et al. Time-resolved line shapes of single quantum emitters via machine learned photon correlations. Phys. Rev. Lett. 131, 053603 (2023).
Lavoie, J. et al. Phase-modulated interferometry, spectroscopy, and refractometry using entangled photon pairs. Adv. Quantum Technol. 3, 1900114 (2020).
Yin, L. et al. Analysis of the spatial properties of correlated photon in collinear phase-matching. Photonics 8, 12 (2021).
Sansa Perna, A., Ortega, E., Gräfe, M. & Steinlechner, F. Visible-wavelength polarization-entangled photon source for quantum communication and imaging. Appl. Phys. Lett. 120, 074001 (2022).
Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).
Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).
Huber, D., Reindl, M., Aberl, J., Rastelli, A. & Trotta, R. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review. J. Opt. 20, 073002 (2018).
Kim, H., Park, H. S. & Choi, S.-K. Three-photon N00N states generated by photon subtraction from double photon pairs. Opt. Express 17, 19720 (2009).
Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).
Sun, F. W., Ou, Z. Y. & Guo, G. C. Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength. Phys. Rev. A 73, 023808 (2006).
Sun, F. W., Liu, B. H., Huang, Y. F., Ou, Z. Y. & Guo, G. C. Observation of the four-photon de Broglie wavelength by state-projection measurement. Phys. Rev. A 74, 033812 (2006).
Liu, B. H. et al. Demonstration of the three-photon de Broglie wavelength by projection measurement. Phys. Rev. A 77, 023815 (2008).
Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).
Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).
Fuenzalida, J. et al. Resolution of quantum imaging with undetected photons. Quantum 6, 646 (2022).
Viswanathan, B., Barreto Lemos, G. & Lahiri, M. Resolution limit in quantum imaging with undetected photons using position correlations. Opt. Express 29, 38185 (2021).
Dorfman, K. E., Schlawin, F. & Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016).
Ko, L., Cook, R. L. & Whaley, K. B. Dynamics of photosynthetic light harvesting systems interacting with N-photon Fock states. J. Chem. Phys. 156, 244108 (2022).
Roslyak, O., Marx, C. A. & Mukamel, S. Nonlinear spectroscopy with entangled photons: manipulating quantum pathways of matter. Phys. Rev. A 79, 033832 (2009).
Rodriguez-Camargo, C. D., Gestsson, H. O., Nation, C., Jones, A. R. & Olaya-Castro, A. Perturbation-theory approach for predicting vibronic selectivity by entangled-photon-pair absorption. Phys. Rev. A 111, 063101 (2025).
Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).
Fox, M. Quantum Optics: An Introduction (Oxford Univ. Press, 2006).
Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals: Emended Edition (Dover Publications, 2010).
Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 3 (Addison Wesley, 1971).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Berchera, I. R. & Degiovanni, I. P. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology. Metrologia 56, 024001 (2019).
Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).
McCaughan, A. N. Readout architectures for superconducting nanowire single photon detectors. Supercond. Sci. Technol. 31, 040501 (2018).
McCaughan, A. N. et al. The thermally-coupled imager: a scalable readout architecture for superconducting nanowire single photon detectors. Appl. Phys. Lett. 121, 102602 (2022).