Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

This Phone Will Auto Shut Display If Someone Peeking Your Phone Displa…

October 15, 2025

Mark Carney could make it easier for us to buy EVs if he wanted. Right…

October 15, 2025

The Sky’s No Longer the Limit

October 15, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Size-driven phase evolution in ultrathin relaxor films
Nanotechnology

Size-driven phase evolution in ultrathin relaxor films

Editor-In-ChiefBy Editor-In-ChiefFebruary 11, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Size-driven phase evolution in ultrathin relaxor films
Share
Facebook Twitter LinkedIn Pinterest Email


  • Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, W. et al. Constructing polymorphic nanodomains in BaTiO3 films via epitaxial symmetry engineering. Adv. Funct. Mater. 30, 1910569 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2015).

    Article 

    Google Scholar
     

  • Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keech, R. et al. Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate–lead titanate thin films. Adv. Funct. Mater. 27, 1605014 (2017).

    Article 

    Google Scholar
     

  • Kim, J. et al. Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors. Nat. Phys. 18, 1502–1509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shetty, S. et al. Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films. Adv. Funct. Mater. 29, 1804258 (2019).

    Article 

    Google Scholar
     

  • Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eom, C. B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindemann, S. et al. Low-voltage magnetoelectric coupling in membrane heterostructures. Sci. Adv. 7, eabh2294 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G., Wen, J., Stock, C. & Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toulouse, J. The three characteristic temperatures of relaxor dynamics and their meaning. Ferroelectrics 369, 203–213 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Epitaxial strain control of relaxor ferroelectric phase evolution. Adv. Mater. 31, 1901060 (2019).

    Article 

    Google Scholar
     

  • Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Mathan, N. et al. A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K. J. Phys. Condens. Matter 3, 8159 (1991).

  • Jiménez, R. et al. Effect of grain size on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).

    Article 

    Google Scholar
     

  • Randall, C. A., Kim, N., Kucera, J., Cao, W. & Shrout, T. R. Intrinsic and extrinsic size effects in fine‐grained morphotropic‐phase‐boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, T. M., Trolier-McKinstry, S. & McIntyre, P. C. The properties of ferroelectric films at small dimensions. Mater. Sci. 30, 263–298 (2000).

    CAS 

    Google Scholar
     

  • Blinc, R., Zalar, B., Zupančič, B., Morozovska, A. N. & Glinchuk, M. D. NMR study of size effects in relaxor PMN nanoparticles. Phys. Stat. Sol. 248, 2653–2655 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Grigalaitis, R. et al. Size effects in a relaxor: further insights into PMN. J. Phys. Condens. Matter 26, 272201 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keech, R. et al. Lateral scaling of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films for piezoelectric logic applications. J. Appl. Phys. 115, 234106 (2014).

    Article 

    Google Scholar
     

  • Riemer, L. M. et al. Dielectric and electro-mechanic nonlinearities in perovskite oxide ferroelectrics, relaxors, and relaxor ferroelectrics. J. Appl. Phys. 129, 054101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kay, H. F. & Dunn, J. W. Thickness dependence of the nucleation field of triglycine sulphate. Philos. Mag. A 7, 2027–2034 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Dkhil, B. et al. Intermediate temperature scale T∗ in lead-based relaxor systems. Phys. Rev. B 80, 064103 (2009).

    Article 

    Google Scholar
     

  • Viehland, D., Jang, S., Cross, E. L. & Wuttig, M. The dielectric relaxation of lead magnesium niobate relaxor ferroelectrics. Phil. Mag. Part B 64, 335–344 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Hehlen, B., Al-Sabbagh, M., Al-Zein, A. & Hlinka, J. Relaxor ferroelectrics: back to the single-soft-mode picture. Phys. Rev. Lett. 117, 155501 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez, A., Kim, J., Meyers, D., Saremi, S. & Martin, L. W. Finite-size effects in lead scandium tantalate relaxor thin films. Phys. Rev. B 101, 094102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z., Duan, W., Wu, J., Gu, B.-L. & Zhang, X.-W. Dielectric properties of relaxor ferroelectric films. J. Appl. Phys. 98, 094105 (2005).

    Article 

    Google Scholar
     

  • Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frederick, J. et al. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films. Appl. Phys. Lett. 108, 132902 (2016).

    Article 

    Google Scholar
     

  • Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grinberg, I., Juhás, P., Davies, P. K. & Rappe, A. M. Relationship between Local structure and relaxor behavior in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Carreaud, J. et al. Size-driven relaxation and polar states in PbMg1/3Nb2/3O3-based system. Phys. Rev. B 72, 174115 (2005).

    Article 

    Google Scholar
     

  • Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, A. et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh‐energy‐storage capacitors. Adv. Mater. 34, 2204356 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirc, R. & Blinc, R. Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007).

    Article 

    Google Scholar
     

  • Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110, 118–125 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, Y. et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2, 143–168 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, Y. & Rabe, K. M. Phase competition in HfO2 with applied electric field from first principles. Phys. Rev. B 102, 214108 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. & Vanderbilt, D. First-principles perturbative computation of dielectric and Born charge tensors in finite electric fields. Phys. Rev. B 75, 115116 (2007).

    Article 

    Google Scholar
     

  • Wang, X. & Vanderbilt, D. First-principles perturbative computation of phonon properties of insulators in finite electric fields. Phys. Rev. B 74, 054304 (2006).

    Article 

    Google Scholar
     

  • Kim, J. Dataset of size-driven phase evolution in ultrathin relaxor films. Zenodo (2024).



  • Source link

    Evolution Ferroelectrics and multiferroics films general interfaces and thin films Materials Science Nanotechnology Nanotechnology and Microengineering phase relaxor Sizedriven Surfaces ultrathin
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleCelebrating Steve Jobs’s impact on consumer tech and design
    Next Article BYD to offer Tesla-like driver assist, even on its cheapest models 
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Machine learning helps identify ‘thermal switch’ for next-generation n…

    October 15, 2025
    Nanotechnology

    Scientists grow metal instead of 3D printing it — and it’s 20x stronge…

    October 14, 2025
    Advertising

    The One Show Launches Indies Discipline to Spotlight Independent Agenc…

    October 14, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202487 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202566 Views

    Cisco Automation Developer Days 2025

    February 10, 202522 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    This Phone Will Auto Shut Display If Someone Peeking Your Phone Displa…

    October 15, 2025

    Mark Carney could make it easier for us to buy EVs if he wanted. Right…

    October 15, 2025

    The Sky’s No Longer the Limit

    October 15, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.