Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

This company could beat Apple and Qualcomm to the year’s most powerful…

May 20, 2025

GRI’s North American lead Matthew Rusk steps aside

May 20, 2025

Mitigating Risk in Construction – Connected World

May 20, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Advanced characterization of confined electrochemical interfaces in el…
Nanotechnology

Advanced characterization of confined electrochemical interfaces in el…

Editor-In-ChiefBy Editor-In-ChiefDecember 9, 2024No Comments16 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Advanced characterization of confined electrochemical interfaces in el…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, H., Wu, Y.-C., Lin, Z., Taberna, P.-L. & Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Article 

    Google Scholar
     

  • Fleischmann, S. et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. A. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Mater. 8, 702–730 (2015).

    CAS 

    Google Scholar
     

  • Beidaghi, M. & Gogotsi, Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Mater. 7, 867–884 (2014).

    CAS 

    Google Scholar
     

  • Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, J. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Probing nanoconfined ion transport in electrified 2D laminate membranes with electrochemical impedance spectroscopy. Small Methods 6, e2200806 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang Ngoc Minh, T., Stoltz, G. & Rotenberg, B. Frequency and field-dependent response of confined electrolytes from brownian dynamics simulations. J. Chem. Phys. 158, 104103 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goikolea, E. & Mysyk, R. in Emerging Nanotechnologies in Rechargeable Energy Storage Systems 131–169 (2017).

  • Pal, B. et al. Understanding electrochemical capacitors with in situ techniques. Renew. Sustain. Energy Rev. 149, 111418 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Patra, A. et al. Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J. Mater. Chem. A 9, 25852–25891 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. X. et al. Tracking ion transport in nanochannels via transient single-particle imaging. Angew. Chem. Int. Ed. 135, e202315805 (2023).

    Article 

    Google Scholar
     

  • Xin, W. et al. Tunable ion transport in two-dimensional nanofluidic channels. J. Phys. Chem. Lett. 14, 627–636 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyd, S. et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater. 20, 1689–1694 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Sub-nanometer confined ions and solvent molecules intercalation capacitance in microslits of 2D materials. Small 17, e2104649 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pean, C. et al. Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137, 12627–12632 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleischmann, S. et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 7, 222–228 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, E. et al. Unraveling the capacitive charge storage mechanism of nitrogen-doped porous carbons by EQCM and ssNMR. J. Am. Chem. Soc. 144, 14217–14225 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, K., Shao, H., Raymundo-Piñero, E., Taberna, P.-L. & Simon, P. Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO). Nat. Commun. 15, 1935 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L., Raymundo-Pinero, E., Sunny, S., Taberna, P. L. & Simon, P. Role of surface terminations for charge storage of Ti3C2Tx MXene electrodes in aqueous acidic electrolyte. Angew. Chem. Int. Ed. 63, e202319238 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Structural disorder determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, H., Shao, H., Daffos, B., Taberna, P.-L. & Simon, P. The effects of local graphitization on the charging mechanisms of microporous carbon supercapacitor electrodes. Electrochem. Commun. 137, 107258 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Mater. 8, 1725–1735 (2015).

    CAS 

    Google Scholar
     

  • Futamura, R. et al. Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mao, X. et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nat. Mater. 18, 1350–1357 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. S., Koishi, A., Bourg, I. C. & Fenter, P. Ion correlations drive charge overscreening and heterogeneous nucleation at solid–aqueous electrolyte interfaces. Proc. Natl Acad. Sci. USA 118, e2105154118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction. Nat. Nanotechnol. 19, 479–484 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Q., Tsai, W. Y. & Balke, N. In situ and operando force-based atomic force microscopy for probing local functionality in energy storage materials. Electrochem. Sci. Adv. 2, e2100038 (2021).

    Article 

    Google Scholar
     

  • Wang, H. et al. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 135, 18968–18980 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forse, A. C. et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137, 7231–7242 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Ion-specific nanoconfinement effect in multilayered graphene membranes: a combined nuclear magnetic resonance and computational study. Nano Lett. 23, 5555–5561 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quill, T. J. et al. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. Nat. Mater. 22, 362–368 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Article 

    Google Scholar
     

  • Chen, B. et al. Highly localized charges of confined electrical double layers inside 0.7 nm layered channels. Adv. Energy Mater. 13, 2300716 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaman, W. et al. In situ investigation of water on MXene interfaces. Proc. Natl Acad. Sci. USA 118, e2108325118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levi, M. D. et al. Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132, 13220–13222 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, L. et al. Understanding the charging of supercapacitors by electrochemical quartz crystal microbalance. Ind. Chem. Mater. 1, 175–187 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Levi, M. D., Daikhin, L., Aurbach, D. & Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: a mini-review. Electrochem. Commun. 67, 16–21 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sigalov, S., Levi, M. D., Daikhin, L., Salitra, G. & Aurbach, D. Electrochemical quartz crystal admittance studies of ion adsorption on nanoporous composite carbon electrodes in aprotic solutions. J. Solid State Electrochem. 18, 1335–1344 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Levi, M. D., Sigalov, S., Aurbach, D. & Daikhin, L. In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes. J. Phys. Chem. C 117, 14876–14889 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Maurel, V. et al. Operando AC in-plane impedance spectroscopy of electrodes for energy storage systems. J. Electrochem. Soc. 169, 120510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Marcotte, A., Mouterde, T., Nigues, A., Siria, A. & Bocquet, L. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19, 1057–1061 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gouy, M. On the constitution of the electric charge on the surface of an electrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).

    Article 
    CAS 

    Google Scholar
     

  • Chapman, D. L. LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25, 475–481 (1913).

    Article 

    Google Scholar
     

  • Stern, O. The theory of the electrolytic double-layer. Z. Elektrochem. 30, 1014–1020 (1924).


    Google Scholar
     

  • Frumkin, A., Petrii, O. & Damaskin, B. in Comprehensive Treatise of Electrochemistry: the Double Layer 221–289 (1980).

  • Trasatti, S. & Lust, E. in Modern Aspects of Electrochemistry Vol. 33 (eds White, R. A. et al.) 1–215 (Springer, 1999).

  • Wei, Z. et al. Relation between double layer structure, capacitance, and surface tension in electrowetting of graphene and aqueous electrolytes. J. Am. Chem. Soc. 146, 760–772 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam, M. T., Islam, M. M., Okajima, T. & Ohsaka, T. Measurements of differential capacitance at mercury/room-temperature ionic liquids interfaces. J. Phys. Chem. C 111, 18326–18333 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Lockett, V., Horne, M., Sedev, R., Rodopoulos, T. & Ralston, J. Differential capacitance of the double layer at the electrode/ionic liquids interface. Phys. Chem. Chem. Phys. 12, 12499–12512 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, J. et al. Charge storage mechanisms of single-layer graphene in ionic liquid. J. Am. Chem. Soc. 141, 16559–16563 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uematsu, Y., Netz, R. R. & Bonthuis, D. J. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces. J. Phys. Condens. Matter 30, 064002 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, J. On obtaining double-layer capacitance and potential of zero charge from voltammetry. J. Electroanal. Chem. 870, 114243 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, P., von Rueden, A. D., Schimmenti, R., Mavrikakis, M. & Suntivich, J. Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nat. Mater. 22, 503–510 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Gordon, E. & Ren, H. Mapping the potential of zero charge and electrocatalytic activity of metal–electrolyte interface via a grain-by-grain approach. Anal. Chem. 92, 2859–2865 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCaffrey, D. L. et al. Mechanism of ion adsorption to aqueous interfaces: graphene/water vs. air/water. Proc. Natl Acad. Sci. USA 114, 13369–13373 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, C. et al. Measuring the pseudocapacitive behavior of individual V2O5 particles by scanning electrochemical cell microscopy. Anal. Chem. 95, 10565–10571 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebejer, N. et al. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6, 329–351 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. C. et al. Electrochemical characterization of single layer graphene/electrolyte interface: effect of solvent on the interfacial capacitance. Angew. Chem. Int. Ed. 60, 13317–13322 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaugstetter, M., Blanc, N., Kratz, M. & Tschulik, K. Electrochemistry under confinement. Chem. Soc. Rev. 51, 2491–2543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. M., Merlet, C. & Smit, B. Carbons with regular pore geometry yield fundamental insights into supercapacitor charge storage. ACS Cent. Sci. 5, 1813–1823 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merlet, C. et al. Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. Interlayer confined water enabled pseudocapacitive sodium-ion storage in nonaqueous electrolyte. ACS Nano 18, 798–808 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lounasvuori, M. et al. Vibrational signature of hydrated protons confined in MXene interlayers. Nat. Commun. 14, 1322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baggio, B. F. & Grunder, Y. In situ X-ray techniques for electrochemical interfaces. Annu. Rev. Anal. Chem. 14, 87–107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. & Lee, P. S. Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv. Energy Mater. 11, 2003311 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kondrat, S. & Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Son, C. Y. & Wang, Z. G. Image-charge effects on ion adsorption near aqueous interfaces. Proc. Natl Acad. Sci. USA 118, e2020615118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondrat, S., Feng, G., Bresme, F., Urbakh, M. & Kornyshev, A. A. Theory and simulations of ionic liquids in nanoconfinement. Chem. Rev. 123, 6668–6715 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondrat, S., Pérez, C., Presser, V., Gogotsi, Y. & Kornyshev, A. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Mater. 5, 6474–6479 (2012).

    CAS 

    Google Scholar
     

  • Luo, Z.-X., Xing, Y.-Z., Ling, Y.-C., Kleinhammes, A. & Wu, Y. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nat. Commun. 6, 6358 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hey, D. et al. Identifying and preventing degradation in flavin mononucleotide-based redox flow batteries via NMR and EPR spectroscopy. Nat. Commun. 14, 5207 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forse, A. Nuclear Magnetic Resonance Studies of Ion Adsorption in Supercapacitor Electrodes. PhD thesis, Univ. Cambridge (2015).

  • Levy, A., de Souza, J. P. & Bazant, M. Z. Breakdown of electroneutrality in nanopores. J. Colloid Interface Sci. 579, 162–176 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robin, P., Delahais, A., Bocquet, L. & Kavokine, N. Ion filling of a one-dimensional nanofluidic channel in the interaction confinement regime. J. Chem. Phys. 158, 124703 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugahara, A. et al. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, T. et al. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide. Nat. Commun. 14, 8360 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, J. B., Wang, R., Ko, J. S., Long, J. W. & Augustyn, V. Critical role of structural water for enhanced Li+ insertion kinetics in crystalline tungsten oxides. J. Electrochem. Soc. 169, 030534 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, P. et al. Understanding pseudocapacitance mechanisms by synchrotron X‐ray analytical techniques. Energy Environ. Mater. 6, e12619 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8, 872–875 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shpigel, N. et al. Can anions be inserted into MXene? J. Am. Chem. Soc. 143, 12552–12559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, J. et al. Metal-ion oligomerization inside electrified carbon micropores and its effect on capacitive charge storage. Adv. Mater. 34, e2107439 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, C. et al. Dehydration-enhanced ion–pore interactions dominate anion transport and selectivity in nanochannels. Sci. Adv. 9, eadf8412 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Z., Shao, H., Xu, K., Taberna, P.-L. & Simon, P. MXenes as high-rate electrodes for energy storage. Trends Chem. 2, 654–664 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tsai, W.-Y., Wang, R., Boyd, S., Augustyn, V. & Balke, N. Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy 81, 105592 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, K., Xian, Y. & Lin, Z. A method for deconvoluting and quantifying the real‐time species fluxes and ionic currents using in situ electrochemical quartz crystal microbalance. Adv. Mater. Interfaces 9, 2200112 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Michael, H., Jervis, R., Brett, D. J. L. & Shearing, P. R. Developments in dilatometry for characterisation of electrochemical devices. Batteries Supercaps 4, 1378–1396 (2021).

    Article 

    Google Scholar
     

  • Hu, M. et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Gittins, J. W. et al. Understanding electrolyte ion size effects on the performance of conducting metal–organic framework supercapacitors. J. Am. Chem. Soc. 146, 12473–12484 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar-Teran, F. et al. Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by AC-electrogravimetry. Electrochem. Commun. 70, 73–77 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Frąckowiak, E., Płatek-Mielczarek, A., Piwek, J. & Fic, K. Advanced characterization techniques for electrochemical capacitors. Adv. Inorg. Chem. 79, 151–207 (2022).

    Article 

    Google Scholar
     

  • Eleri, O. E., Lou, F. & Yu, Z. in Nanostructured Materials for Supercapacitors 101–128 (2022).

  • Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Prim. 1, 41 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tivony, R., Safran, S., Pincus, P., Silbert, G. & Klein, J. Charging dynamics of an individual nanopore. Nat. Commun. 9, 4203 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black, J. M. et al. Strain‐based in situ study of anion and cation insertion into porous carbon electrodes with different pore sizes. Adv. Energy Mater. 4, 1300683 (2014).

    Article 

    Google Scholar
     

  • Ge, K., Shao, H., Taberna, P.-L. & Simon, P. Understanding ion charging dynamics in nanoporous carbons for electrochemical double layer capacitor applications. ACS Energy Lett. 8, 2738–2745 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Henrique, F., Żuk, P. J. & Gupta, A. A network model to predict ionic transport in porous materials. Proc. Natl Acad. Sci. USA 121, e2401656121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, H. et al. Physics-based machine learning discovered nanocircuitry for nonlinear ion transport in nanoporous electrodes. J. Phys. Chem. C 127, 13699–13705 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. General design concepts for CAPodes as ionologic devices. Angew. Chem. 135, e202305397 (2023).

    Article 

    Google Scholar
     



  • Source link

    Advanced Batteries characterization confined el.. electrochemical Electrochemistry general interfaces Materials Science Nanotechnology Nanotechnology and Microengineering Supercapacitors
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Download: how OpenAI tests its models, and the ethics of uterus tr…
    Next Article Samsung One UI 7 Beta Starts To Roll Out Showcasing the Glimpse of Fut…
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Quantum Semiconductor Nanoclusters for Sustainable Hydrogen

    May 20, 2025
    Nanotechnology

    Novel nanoreactor combines antibiotic detection and degradation in a s…

    May 19, 2025
    Nanotechnology

    Nanoparticle-cell interface enables electromagnetic wireless programmi…

    May 18, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202463 Views

    Cisco Automation Developer Days 2025

    February 10, 202516 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202512 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    This company could beat Apple and Qualcomm to the year’s most powerful…

    May 20, 2025

    GRI’s North American lead Matthew Rusk steps aside

    May 20, 2025

    Mitigating Risk in Construction – Connected World

    May 20, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.