Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

YouTube Lets Channels Share More Performance Data With Brands

July 10, 2025

Comscore, iSpot, and VideoAmp Pass JIC Audit

July 10, 2025

How to Build Culture With a Fully Remote Team

July 10, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»A bioinspired polymeric membrane-enclosed insulin crystal achieves lon…
Nanotechnology

A bioinspired polymeric membrane-enclosed insulin crystal achieves lon…

Editor-In-ChiefBy Editor-In-ChiefMarch 2, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
A bioinspired polymeric membrane-enclosed insulin crystal achieves lon…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature 254, 109–114 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ungricht, R. & Kutay, U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 18, 229–245 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mekhail, K. & Moazed, D. The nuclear envelope in genome organization, expression and stability. Nat. Rev. Mol. Cell Biol. 11, 317–328 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327–336 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. CSH Perspect. Biol. 2, a000562 (2010).

    CAS 

    Google Scholar
     

  • Mudumbi, K. C. et al. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat. Commun. 11, 2184 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahms, M., Lehrich, P., Hüve, J., Sanetra, N. & Peters, R. Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic 10, 1228–1242 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakielny, S. & Dreyfuss, G. Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677–690 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalbey, D. & von Heijne, G. (eds) Protein Targeting, Transport, and Translocation (Elsevier, 2002).

  • Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, R. Y. et al. Flexible phenylalanine–glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm. Mol. Biol. Cell 13, 425–434 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosako, H. & Imamoto, N. Phosphorylation of nucleoporins: signal transduction-mediated regulation of their interaction with nuclear transport receptors. Nucleus 1, 1026–1035 (2010).

    Article 

    Google Scholar
     

  • Komeili, A. & O’Shea, E. K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Souza, C. P. & Osmani, S. A. Mitosis, not just open or closed. Eukaryot. Cell 6, 1521–1527 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z., Hueckel, T., Irvine, W. T. M. & Sacanna, S. Transmembrane transport in inorganic colloidal cell-mimics. Nature 597, 220–224 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S. et al. Voltage-mediated water dynamics enables on-demand transport of sugar molecules in two-dimensional channels. Angew. Chem. Int. Ed. Engl. 62, e202309024 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Møller, N. Ketone body, 3-hydroxybutyrate: minor metabolite–major medical manifestations. J. Clin. Endocrinol. Metab. 105, dgaa370 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Malaisse, W. J. et al. Ketone bodies and islet function: 45Ca handling, insulin synthesis, and release. Am. J. Physiol. 259, E117–E122 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirobata, T. et al. Serum ketone body measurement in patients with diabetic ketoacidosis. Diabetol. Int. 13, 624–630 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laracuente, M.-L., Yu, M. H. & McHugh, K. J. Zero-order drug delivery: state of the art and future prospects. J. Control. Release 327, 834–856 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 7, 406–420 (2022).

    Article 

    Google Scholar
     

  • Teng, R. et al. Comparison of protocols to reduce diabetic ketoacidosis in patients with type 1 diabetes prescribed a sodium–glucose cotransporter 2 inhibitor. Diabetes Spectr. 34, 42–51 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Models Mech. 3, 525–534 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. Y. et al. Persicarin isolated from Oenanthe javanica protects against diabetes-induced oxidative stress and inflammation in the liver of streptozotocin-induced type 1 diabetic mice. Exp. Ther. Med. 13, 1194–1202 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, M. P. et al. Diabetic myopathy differs between Ins2Akita+/− and streptozotocin-induced type 1 diabetic models. J. Appl. Physiol. 106, 1650–1659 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeo, H. J. et al. Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep. 51, 362–367 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo, J. et al. Blood metabolic and physiological profiles of Bama miniature pigs at different growth stages. Porcine Health Manag. 8, 35 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    achieves bioinspired Biomedical engineering crystal Drug delivery general insulin.. lon.. Materials Science membraneenclosed Nanotechnology Nanotechnology and Microengineering polymeric
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleMustard Made Lowdown Locker Review: Stylish Storage
    Next Article HMD 2660 Flip, 150 Music, 130 Music and Barca 3210 unveiled at MWC
    Editor-In-Chief
    • Website

    Related Posts

    Advertising

    Comscore, iSpot, and VideoAmp Pass JIC Audit

    July 10, 2025
    Nanotechnology

    A GSH-consuming polymeric nanoparticles drives ferroptosis amplificati…

    July 9, 2025
    Nanotechnology

    Rolling circle amplification/transcription-based nanotechnology for ef…

    July 8, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202474 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202540 Views

    Cisco Automation Developer Days 2025

    February 10, 202521 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    YouTube Lets Channels Share More Performance Data With Brands

    July 10, 2025

    Comscore, iSpot, and VideoAmp Pass JIC Audit

    July 10, 2025

    How to Build Culture With a Fully Remote Team

    July 10, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.