Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

This Phone Will Auto Shut Display If Someone Peeking Your Phone Displa…

October 15, 2025

Mark Carney could make it easier for us to buy EVs if he wanted. Right…

October 15, 2025

The Sky’s No Longer the Limit

October 15, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Bacteria in polymers create cable-like structures that grow into livin…
Nanotechnology

Bacteria in polymers create cable-like structures that grow into livin…

Editor-In-ChiefBy Editor-In-ChiefJanuary 20, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Bacteria in polymers create cable-like structures that grow into livin…
Share
Facebook Twitter LinkedIn Pinterest Email


Bacteria in polymers form cables that grow into living gels
A 3D rendering captured with a confocal microscope shows the development of serpentine “cables” as non-motile E. coli bacterial cells proliferate in a polymeric solution. Scale bars are included. Credit: Sebastian Gonzalez La Corte et al./Princeton University/Caltech

Scientists at Caltech and Princeton University have discovered that bacterial cells growing in a solution of polymers, such as mucus, form long cables that buckle and twist on each other, building a kind of “living Jell-O.”

The finding could be particularly important to the study and treatment of diseases such as cystic fibrosis, in which the mucus that lines the lungs becomes more concentrated, often causing bacterial infections that take hold in that mucus to become life threatening. This discovery could also have implications in studies of polymer-secreting conglomerations of bacteria known as biofilms—the slippery goo on river rocks, for example—and in industrial applications where they can cause equipment malfunctions and health hazards.

The work is described in a paper published on January 17 in the journal Science Advances.

“We’ve discovered that when many bacteria grow in fluids containing spaghetti-like molecules called polymers, such as mucus in the lungs, they form cable-like structures that intertwine like living gels,” says Sujit Datta, a professor of chemical engineering, bioengineering, and biophysics at Caltech and corresponding author of the new paper. “And, interestingly, there are similarities between the physics of how these structures form and the microscopic physics underlying many nonliving gels, like Purell or Jell-O.”

Datta recently moved to Caltech from Princeton University. One of his graduate students at Princeton, Sebastian Gonzalez La Corte, is lead author of the paper. He and Datta had been interested in how mucus concentration changes in the lungs and guts of cystic fibrosis patients—in whom more polymers than usual are present. Working with mucus samples provided by colleagues at MIT, Gonzalez La Corte grew E. coli bacteria (commonly used in laboratory studies) in regular liquid and in cystic fibrosis-like samples and then observed the specimens under a microscope to watch how the bacterial cells grew in each case.

He focused on cells that had lost the ability to swim, as is the case for many bacteria in nature. Under normal circumstances, when such a cell divides into two, the resulting cells separate and diffuse away from each other. However, Gonzalez La Corte found that in a polymeric solution, the copied cells remained stuck to each other, end to end.

“As cells continue to divide and stick to each other, they start to form these beautiful long structures that we call cables,” Gonzalez La Corte says. “At some point, they actually bend and fold on each other and form an entangled network.”

The team found that the cables continue to elongate and grow as long as the cells have the nutrients they need, eventually creating chains that are thousands of cells long.

Subsequent experiments showed that it does not seem to matter which bacterial species are introduced, nor does the type of organic polymer solution make a difference; once enough polymer surrounds the bacterial cells, the cables grow. The researchers even saw the same result with bacteria in synthetic polymers.

Bacteria in polymers form cables that grow into living gels
A 3D rendering captured using a confocal microscope shows the development of serpentine “cables” as non-motile E. coli bacterial cells proliferate in a polymeric solution. Credit: Sebastian Gonzalez La Corte et al./Princeton University/Caltech

Although the initial motivation for the study was to better understand the growth of infections in patients with cystic fibrosis, the findings are more broadly relevant. Mucus plays an important role in the human body, not only in the lungs but also in the gut and in the cervicovaginal tract. And Datta says the work is also important in the context of biofilms, groupings of bacteria that grow an encapsulating polymer matrix of their own. There are biofilms in the human body, such as dental plaque, but they are also extremely common in soil and in industrial settings, where they can damage equipment and cause health hazards.

“That polymer matrix that they’ve secreted is what makes biofilms so tough to remove from surfaces and treat with antibiotics,” Datta says. “Understanding how cells grow in that matrix could be key to discovering how to better control biofilms.”

Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
Sign up for our free newsletter and get updates on breakthroughs,
innovations, and research that matter—daily or weekly.

Understanding the Physics Behind the Cables

Through carefully designed experiments, the team found that the external pressure exerted by the polymers surrounding the dividing cells is what forces the cells together and holds them in place. In physics, such an attractive force that is under the control of an outside pressure is called a depletion interaction. Gonzalez La Corte used the theory of depletion interaction to create a theoretical model of bacterial cable growth. The model can predict when a cable will survive and grow in a polymeric environment.

“Now we can actually use established theories from polymer physics, which were developed for completely different things, in these biological systems to quantitatively predict when these cables will arise,” Datta says.

Why Do the Bacteria Form These Cables?

“We discovered this interesting, unusual, very unexpected phenomenon,” Datta says. “We can also explain why it happens from a mechanistic, physics perspective. Now the question is: What are the biological implications?”

Interestingly, there are two possibilities: The bacteria could be clumping together to form this network of living gel in an effort to make themselves larger and therefore more difficult for immune cells to engulf and destroy. Alternately, cable formation could actually be harmful to the bacteria. After all, the secretions from the host cause the bacteria to build the cables. “Mucus isn’t static; for example, in the lungs, it’s being constantly swept up by little hairs on the surface of the lungs and propelled upward,” Datta says. “Could it be that when bacteria are all clumped together in these cables, it’s actually easier to get rid of them—to expel them out of the body?”

For now, no one knows which possibility is correct, and Datta says that is what makes this project remain interesting. “Now that we have found this phenomenon, we can frame these new questions and design further experiments to test our suspicions,” he says.

More information:
Sebastian Gonzalez La Corte et al, Morphogenesis of bacterial cables in polymeric environments, Science Advances (2025). DOI: 10.1126/sciadv.adq7797. www.science.org/doi/10.1126/sciadv.adq7797

Provided by
California Institute of Technology


Citation:
Bacteria in polymers create cable-like structures that grow into living gels (2025, January 18)
retrieved 20 January 2025
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

Bacteria cablelike Create Grow livin.. materials Nanotech Physics Physics News polymers science Science news structures technology Technology News
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleBiden can’t save Trump’s enemies from persecution with preemptive pard…
Next Article Realme Neo 7 SE Spotted on China’s 3C Certification Site With Charging…
Editor-In-Chief
  • Website

Related Posts

Nanotechnology

Machine learning helps identify ‘thermal switch’ for next-generation n…

October 15, 2025
Nanotechnology

Scientists grow metal instead of 3D printing it — and it’s 20x stronge…

October 14, 2025
Nanotechnology

Nanobody Immunolabelling and three-dimensional imaging reveals spatial…

October 13, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

100+ TikTok Statistics Updated for December 2024

December 4, 202487 Views

How to Fix Cant Sign in Apple Account, Verification Code Not Received …

February 11, 202566 Views

Cisco Automation Developer Days 2025

February 10, 202522 Views
Stay In Touch
  • Facebook
  • YouTube
  • TikTok
  • WhatsApp
  • Twitter
  • Instagram
Latest Reviews

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
About Us

Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

Our Picks

This Phone Will Auto Shut Display If Someone Peeking Your Phone Displa…

October 15, 2025

Mark Carney could make it easier for us to buy EVs if he wanted. Right…

October 15, 2025

The Sky’s No Longer the Limit

October 15, 2025

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

Type above and press Enter to search. Press Esc to cancel.