Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

‘Crown’ Star Claire Foy Quit Caffeine After Living With Gut Parasite f…

February 4, 2026

Poll: 35% of Canadians open to buying a Chinese EV, just 1 in 5 see th…

February 4, 2026

Developer’s Guide to Cisco Live EMEA 2026: AI, Automation, and Meraki

February 4, 2026
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Ultrafast transition from coherent to incoherent polariton nonlinearit…
Nanotechnology

Ultrafast transition from coherent to incoherent polariton nonlinearit…

Editor-In-ChiefBy Editor-In-ChiefJanuary 22, 2026No Comments9 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Ultrafast transition from coherent to incoherent polariton nonlinearit…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article 

    Google Scholar
     

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Genco, A. et al. Femtosecond switching of strong light-matter interactions in microcavities with two-dimensional semiconductors. Nat. Commun. 16, 6490 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasa, P. & Lienau, C. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photon. 5, 2–23 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aberra Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chevrier, K. et al. Organic exciton in strong coupling with long-range surface plasmons and waveguided modes. ACS Photon. 5, 80–84 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Timmer, D. et al. Plasmon mediated coherent population oscillations in molecular aggregates. Nat. Commun. 14, 8035 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greten, L. et al. Strong coupling of two-dimensional excitons and plasmonic photonic crystals: microscopic theory reveals triplet spectra. ACS Photon. 11, 1396–1411 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Abajo, F. J. G. et al. Roadmap for photonics with 2D materials. ACS Photon. (2025).

  • Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsch, F., Selig, M. & Knorr, A. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett. 124, 257402 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trovatello, C. et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mapara, V. et al. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett. 22, 1680–1687 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. X. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci. Appl. 11, 94 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, W. et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photon. 6, 2832–2840 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Ultrafast investigation of the strong coupling system between square Ag nanohole array and monolayer WS2. Nano Lett. 25, 3391–3397 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, K. et al. Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities. Nat. Commun. 14, 5310 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmer, D. et al. Ultrafast coherent exciton couplings and many-body interactions in monolayer WS2. Nano Lett. 24, 8117–8125 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peruffo, N., Mancin, F. & Collini, E. Coherent dynamics in solutions of colloidal plexcitonic nanohybrids at room temperature. Adv. Opt. Mater. 11, 2203010 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photon. 7, 128–132 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Policht, V. R., Proscia, N. V. & Cunningham, P. D. Insight into exciton polaritons of two-dimensional transition metal dichalcogenides with time-resolved spectroscopy. MRS Commun. 15, 1–20 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Toffoletti, F. & Collini, E. Coherent phenomena in exciton–polariton systems. J. Phys. Mater. 8, 022002 (2025).

    Article 

    Google Scholar
     

  • Takemura, N. et al. Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime. Phys. Rev. B 92, 235305 (2015).

    Article 

    Google Scholar
     

  • Fresch, E. et al. Two-dimensional electronic spectroscopy. Nat. Rev. Methods Prim. 3, 84 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Lomsadze, B., Moody, G., Smallwood, C. & Cundiff, S. Optical Multidimensional Coherent Spectroscopy (Oxford Univ. Press, 2023).

  • Mewes, L., Wang, M., Ingle, R. A., Börjesson, K. & Chergui, M. Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Commun. Phys. 3, 157 (2020).

    Article 

    Google Scholar
     

  • Son, M. et al. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat. Commun. 13, 7305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, M. et al. Direct evidence of ultrafast energy delocalization between optically hybridized J-aggregates in a strongly coupled microcavity. Adv. Opt. Mater. 12, 2400821 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Finkelstein-Shapiro, D. et al. Understanding radiative transitions and relaxation pathways in plexcitons. Chem. 7, 1092–1107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, D. H. et al. Hybridized exciton-photon-phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett. 128, 087401 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhamija, S. & Son, M. Mapping the dynamics of energy relaxation in exciton–polaritons using ultrafast two-dimensional electronic spectroscopy. Chem. Phys. Rev. 5, 041309 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shen, K., Sun, K., Gelin, M. F. & Zhao, Y. 2D electronic spectroscopy uncovers 2D materials: theoretical study of nanocavity-integrated monolayer semiconductors. J. Phys. Chem. Lett. 16, 3264–3273 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal, M. E., Vamivakas, A. N., Cundiff, S. T., Krauss, T. D. & Huo, P. Polariton spectra under the collective coupling regime. II. 2D non-linear spectra. J. Chem. Phys. 162, 074110 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallego-Valencia, D., Mewes, L., Feist, J. & Sanz-Vicario, J. L. Coherent multidimensional spectroscopy in polariton systems. Phys. Rev. A 109, 063704 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mondal, M. E. et al. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons. J. Chem. Phys. 159, 094102 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finkelstein-Shapiro, D., Mante, P.-A., Balci, S., Zigmantas, D. & Pullerits, T. Non-Hermitian Hamiltonians for linear and nonlinear optical response: a model for plexcitons. J. Chem. Phys. 158, 104104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C., Bai, S. & Shi, Q. A theoretical model for linear and nonlinear spectroscopy of plexcitons. J. Chem. Theory Comput. 21, 3612–3624 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quenzel, T. et al. Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates. ACS Nano 16, 4693–4704 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, P., De, B., Tripathi, R. & Singh, R. Exciton-exciton interaction: a quantitative comparison between complimentary phenomenological models. Phys. Rev. B 109, 155423 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Conway, M. et al. Direct measurement of biexcitons in monolayer WS2. 2D Mater. 9, 021001 (2022).

    Article 

    Google Scholar
     

  • Katsch, F., Selig, M. & Knorr, A. Theory of coherent pump–probe spectroscopy in monolayer transition metal dichalcogenides. 2D Mater. 7, 015021 (2019).

    Article 

    Google Scholar
     

  • Purz, T. L. et al. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys. 156, 214704 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greten, L., Salzwedel, R., Schutsch, D. & Knorr, A. Microscopic theory for a minimal oscillator model of exciton-plasmon coupling in hybrids of two-dimensional semiconductors and metal nanoparticles. Phys. Rev. B 111, 205438 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • del Pino, J., Feist, J. & Garcia-Vidal, F. J. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17, 053040 (2015).

    Article 

    Google Scholar
     

  • Chng, B. X. K. et al. Mechanism of molecular polariton decoherence in the collective light–matter couplings regime. J. Phys. Chem. Lett. 15, 11773–11783 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DelPo, C. A. et al. Polariton transitions in femtosecond transient absorption studies of ultrastrong light-molecule coupling. J. Phys. Chem. Lett. 11, 2667–2674 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Autry, T. M. et al. Excitation ladder of cavity polaritons. Phys. Rev. Lett. 125, 067403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Büttner, S. et al. Probing plexciton dynamics with higher-order spectroscopy. J. Chem. Phys. 163, 044702 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Vasa, P. et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. ACS Nano 4, 7559–7565 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garraway, B. M. The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. R. Soc. A 369, 1137–1155 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bange, J. P. et al. Ultrafast dynamics of bright and dark excitons in monolayer WSe2 and heterobilayer WSe2/MoS2. 2D Mater. 10, 035039 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. Ultrafast electronic relaxation dynamics of atomically thin MoS2 is accelerated by wrinkling. ACS Nano 17, 16682–16694 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cadore, A. et al. Monolayer WS2 electro- and photo-luminescence enhancement by TFSI treatment. 2D Mater. 11, 025017 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Grupp, A. et al. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate. J. Opt. 20, 014005 (2017).

    Article 

    Google Scholar
     

  • Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37, 3027–3029 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Timmer, D., Lünemann, D. C., De Sio, A., Cerullo, G. & Lienau, C. Disentangling signal contributions in two-dimensional electronic spectroscopy in the pump–probe geometry. J. Chem. Phys. 162, 12 (2025).

    Article 

    Google Scholar
     

  • Palmieri, B., Abramavicius, D. & Mukamel, S. Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes. J. Chem. Phys. 130, 204512 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  • Timmer, D. et al. Dataset for ‘Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure’. Zenodo (2025).



  • Source link

    coherent general incoherent Materials Science Nanocavities Nanotechnology Nanotechnology and Microengineering nonlinearit.. polariton Polaritons transition Two-dimensional materials ultrafast Ultrafast photonics
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleKate Hudson Is in the 2026 Oscar Race. Here’s the Movie That Got Her N…
    Next Article I Found the Anker Solix F3800 Power Station and Solar Panel for $1,600…
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Ultra-rapid nanoplasmonic colorimetry in microfluidics for antimicrobi…

    February 3, 2026
    Nanotechnology

    New project takes aim at theory-experiment gap in materials data – Phy…

    February 2, 2026
    Nanotechnology

    New Therapy Uses Tumor Chemistry to Trigger Cancer Cell Death

    February 1, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    New IPA president Karen Martin delivers rousing call to creative actio…

    April 1, 2025127 Views

    100+ TikTok Statistics Updated for December 2024

    December 4, 2024117 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202591 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    ‘Crown’ Star Claire Foy Quit Caffeine After Living With Gut Parasite f…

    February 4, 2026

    Poll: 35% of Canadians open to buying a Chinese EV, just 1 in 5 see th…

    February 4, 2026

    Developer’s Guide to Cisco Live EMEA 2026: AI, Automation, and Meraki

    February 4, 2026

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.