Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

How to Use VN Code in VN Video Editor

July 9, 2025

Green is the New Gold: Smarter, Cleaner Mining

July 9, 2025

Siemens enters collaboration with Microsoft to enhance IoT interoperab…

July 9, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»The wonders of X-PDT: an advance route to cancer theranostics | Journa…
Nanotechnology

The wonders of X-PDT: an advance route to cancer theranostics | Journa…

Editor-In-ChiefBy Editor-In-ChiefOctober 25, 2024No Comments18 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
The wonders of X-PDT: an advance route to cancer theranostics | Journa…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Mattiuzzi C, Lippi G. Current Cancer Epidemiology glossary. J Epidemiol Glob Health. 2019;9:217–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debien V, De Caluwé A, Wang X, Piccart-Gebhart M, Tuohy VK, Romano E, et al. Immunotherapy in breast cancer: an overview of current strategies and perspectives. NPJ Breast Cancer. 2023;9:1–10.

    Article 

    Google Scholar
     

  • Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21:541–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oudkerk M, Liu SY, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction—evidence, pitfalls and future perspectives. Nat Rev Clin Oncol. 2021;18:135–51.

    Article 
    PubMed 

    Google Scholar
     

  • Schlumberger M, Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat Rev Endocrinol. 2021;17:176–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, et al. Epidemiology and prevention of prostate cancer. Eur Urol Oncol. 2021;4:877–92.

    Article 
    PubMed 

    Google Scholar
     

  • Singh D, Vignat J, Lorenzoni V, Eslahi M, Ginsburg O, Lauby-Secretan B, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob Health. 2023;11:e197–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van HLMC, Vrieling A, Van Der HAG, Kogevinas M, Richters A, Kiemeney LA. Global trends in the epidemiology of bladder cancer : challenges for public health and clinical practice. Nat Rev Clin Oncol. 2023;20:287–304.

    Article 

    Google Scholar
     

  • Esmeeta A, Adhikary S, Dharshnaa V, Swarnamughi P, Ummul Maqsummiya Z, Banerjee A, et al. Plant-derived bioactive compounds in colon cancer treatment: an updated review. Biomed Pharmacother. 2022;153: 113384.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirza MR, Chase DM, Slomovitz BM, dePont CR, Novák Z, Black D, et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med. 2023;388:2145–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choueiri TK, Albiges L, Atkins MB, Bakouny Z, Bratslavsky G, Braun DA, et al. From basic science to clinical translation in kidney cancer: a report from the second kidney cancer research summit. Clin Cancer Res. 2022;28:831–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Otero P, Ailawadhi S, Arnulf B, Patel K, Cavo M, Nooka AK, et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N Engl J Med. 2023;388:1002–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armitage JO, Long DL. Mantle-cell lymphoma. N Engl J Med. 2022;386:2495–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hingorani SR. Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nat Rev Cancer. 2023;23:57–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown JR, Eichhorst B, Hillmen P, Jurczak W, Kaźmierczak M, Lamanna N, et al. Zanubrutinib or Ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2023;388:319–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel SP, Othus M, Chen Y, Wright GP, Yost KJ, Hyngstrom JR, et al. Neoadjuvant–adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N Engl J Med. 2023;388:813–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol. 2023;200:137–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pashayan N, Pharoah PDP. The challenge of early detection in cancer. Science. 1979;2020(368):589–90.


    Google Scholar
     

  • Li X, Bao Y, Li Z, Teng P, Ma L, Zhang H, et al. Employing antagonistic C-X-C motif chemokine receptor 4 antagonistic peptide functionalized NaGdF4 nanodots for magnetic resonance imaging-guided biotherapy of breast cancer. Sci Rep. 2024;14:15764.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar Sarangi M, Padhi S, Rath G, Sekhar Nanda S, Kee YD. Advances in immunological and theranostic approaches of gold nanoparticles—a review. Inorg Chem Commun. 2023;153:110858.

    Article 
    CAS 

    Google Scholar
     

  • Dutta Gupta Y, Mackeyev Y, Krishnan S, Bhandary S. Mesoporous silica nanotechnology: promising advances in augmenting cancer theranostics. Cancer Nanotechnol. 2024;15:1–44.

    Article 

    Google Scholar
     

  • Hosseini SM, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Mater Today Chem. 2023;29: 101400.

    Article 
    CAS 

    Google Scholar
     

  • Yukawa H, Sato K, Baba Y. Theranostics applications of quantum dots in regenerative medicine, cancer medicine, and infectious diseases. Adv Drug Deliv Rev. 2023;200:114863.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Cao Y, Ge X, Zhang Z, Gao S, Song J. X-ray excited luminescence materials for cancer diagnosis and theranostics. Laser Photon Rev. 2024;18:2300565.

    Article 
    CAS 

    Google Scholar
     

  • Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sci. 2024;352: 122899.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahimkhoei V, Alzaidy AH, Abed MJ, Rashki S, Salavati-Niasari M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv Colloid Interface Sci. 2024;329: 103204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev. 2022;51:6177–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Domingues I, Pereira G, Martins P, Duarte H, Santos J, Abreu PH. Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET. Artif Intell Rev. 2020;53:4093–160.

    Article 

    Google Scholar
     

  • Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, et al. Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12:1–26.

    Article 

    Google Scholar
     

  • Wu Q, Zheng Q, He Y, Chen Q, Yang H. Emerging nanoagents for medical x-ray imaging. Anal Chem. 2023;95:33–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun W, Zhou Z, Pratx G, Chen X, Chen H. Nanoscintillator-mediated X-ray induced photodynamic therapy for deep-seated tumors: from concept to biomedical applications. Theranostics. 2020;10:1296–318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen semimetal (Sb, Bi)-based nanomaterials for cancer imaging and therapy: a materials perspective. ACS Nano. 2021;15:2038–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pires L, Calcada C, Grafinger O, Juneja R, Mar S, Leong H, et al. Photosensitizers as radiosensitizers for metastatic and deep-seated tumors: in vitro and ex-ovo preclinical studies. Photodiagnosis Photodyn Ther. 2023;41: 103422.

    Article 

    Google Scholar
     

  • Belanova A, Chmykhalo V, Beseda D, Belousova M, Butova V, Soldatov A, et al. A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents’ safety and relevant design considerations. Photochem Photobiol Sci. 2020;19:1134–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev. 2016;45:6488–519.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev. 2019;48:3073–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirakci K, Kubát P, Fejfarova K, Martinčík J, Nikl M, Lang K. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: a new class of nanoscintillators. Inorg Chem. 2016;55:803–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei L, Wang Y, Kuzmin A, Hua Y, Zhao J, Xu S, et al. Next generation lanthanide doped nanoscintillators and photon converters. eLight. 2022;2:1–24.

    Article 

    Google Scholar
     

  • Bulin A-L, Vasil’ev A, Belsky A, Amans D, Ledoux G, Dujardin C. Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect. Nanoscale. 2015;7:5744–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Liu X, Wu W, Yang K, Mao R, Ahmad F, et al. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators. Angew Chem. 2019;131:2039–44.

    Article 

    Google Scholar
     

  • Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater. 2017;29:1–26.

    Article 

    Google Scholar
     

  • Shen S, Jiang D, Cheng L, Chao Y, Nie K, Dong Z, et al. Renal-clearable ultrasmall coordination polymer nanodots for chelator-free 64Cu-labeling and imaging-guided enhanced radiotherapy of cancer. ACS Nano. 2017;11:9103–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang XD, Chen J, Min Y, Park GB, Shen X, Song SS, et al. Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv Funct Mater. 2014;24:1718–29.

    Article 

    Google Scholar
     

  • Gong T, Li Y, Lv B, Wang H, Liu Y, Yang W, et al. Full-process radiosensitization based on nanoscale metal-organic frameworks. ACS Nano. 2020;14:3032–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for deep tumor treatment. Mini Rev Med Chem. 2021;21:677–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popovich K, Procházková L, Pelikánová IT, Vlk M, Palkovský M, Jarý V, et al. Preliminary study on singlet oxygen production using CeF3:Tb3+@SiO2-PpIX. Radiat Meas. 2016;90:325–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Q, Guo X, Cheng Y, Chudal L, Pandey NK, Zhang J, et al. Use of copper-cysteamine nanoparticles to simultaneously enable radiotherapy, oxidative therapy and immunotherapy for melanoma treatment. Signal Transduct Target Ther. 2020;5:4–6.


    Google Scholar
     

  • Ma L, Zou X, Chen W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J Biomed Nanotechnol. 2014;10:1501–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Zou X, Bui B, Chen W, Song KH, Solberg T. X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Appl Phys Lett. 2014;105: 013702.

    Article 

    Google Scholar
     

  • Gadzhimagomedova Z, Zolotukhin P, Kit O, Kirsanova D, Soldatov A. Nanocomposites for X-ray photodynamic therapy. Int J Mol Sci. 2020;21:1–15.

    Article 

    Google Scholar
     

  • Sengar P, Garcia-Tapia K, Chauhan K, Jain A, Juarez-Moreno K, Borbón-Nuñez HA, et al. Dualphotosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy. J Colloid Interface Sci. 2019;536:586–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Zhang X, Shen Y, Shi F, Song C, Liu T, et al. Ultra-high FRET efficiency NaGdF4: Tb3+-Rose Bengal biocompatible nanocomposite for X-ray excited photodynamic therapy application. Biomaterials. 2018;184:31–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen MH, Jenh YJ, Wu SK, Chen YS, Hanagata N, Lin FH. Non-invasive photodynamic therapy in brain cancer by use of Tb3+-doped LaF3 nanoparticles in combination with photosensitizer through X-ray irradiation: a proof-of-concept study. Nanoscale Res Lett. 2017;12:1–6.

    Article 

    Google Scholar
     

  • Elmenoufy AH, Tang Y, Hu J, Xu H, Yang X. A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem Commun. 2015;51:12247–50.

    Article 
    CAS 

    Google Scholar
     

  • Bulin A-L, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, et al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J Phys Chem C. 2013;117:21583–9.

    Article 
    CAS 

    Google Scholar
     

  • Kaščáková S, Giuliani A, Lacerda S, Pallier A, Mercère P, Tóth É, et al. X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: beyond depth limitations. Nano Res. 2015;8:2373–9.

    Article 

    Google Scholar
     

  • Zhang X, Lan B, Wang S, Gao P, Liu T, Rong J, et al. Low-dose X-ray excited photodynamic therapy based on NaLuF4:Tb3+-Rose Bengal nanocomposite. Bioconjug Chem. 2019;30:2191–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popovich K, Tomanová K, Čuba V, Procházková L, Pelikánová IT, Jakubec I, et al. LuAG:Pr3+-porphyrin based nanohybrid system for singlet oxygen production: toward the next generation of PDTX drugs. J Photochem Photobiol B. 2018;179:149–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Procházková L, Pelikánová IT, Mihóková E, Dědic R, Čuba V. Novel scintillating nanocomposite for X-ray induced photodynamic therapy. Radiat Meas. 2019;121:13–7.

    Article 

    Google Scholar
     

  • Procházková L, Čuba V, Beitlerová A, Jarý V, Omelkov S, Nikl M. Ultrafast Zn(Cd, Mg)O: Ga nanoscintillators with luminescence tunable by band gap modulation. Opt Express. 2018;26:29482–94.

    Article 
    PubMed 

    Google Scholar
     

  • Wang GD, Nguyen HT, Chen H, Cox PB, Wang L, Nagata K, et al. X-ray induced photodynamic therapy: a combination of radiotherapy and photodynamic therapy. Theranostics. 2016;6:2295–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekah D, Cooper D, Kudinov K, Hill C, Seuntjens J, Bradforth S, et al. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. J Photochem Photobiol A Chem. 2016;329:26–34.

    Article 
    CAS 

    Google Scholar
     

  • Zou X, Yao M, Ma L, Hossu M, Han X, Juzenas P, et al. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine. 2014;9:2339–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sapre AA, Novitskaya E, Vakharia V, Cota A, Wrasidlo W, Hanrahan SM, et al. Optimized scintillator YAG: Pr nanoparticles for X-ray inducible photodynamic therapy. Mater Lett. 2018;228:49–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaszewski J, Olszewski J, Rosowska J, Witkowski B, Wachnicki Ł, Wenelska K, et al. HfO2: Eu nanoparticles excited by X-rays and UV-visible radiation used in biological imaging. J Rare Earths. 2019;37:1176–82.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H. Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale. 2018;10:342–50.

    Article 
    CAS 

    Google Scholar
     

  • Generalov R, Kuan WB, Chen W, Kristensen S, Juzenas P. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf B Biointerfaces. 2015;129:79–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zagami P, Carey LA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022;8:1–10.

    Article 

    Google Scholar
     

  • Perou CM, Sorlie T, Eisen MB, Van De RM, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;533:747–52.

    Article 

    Google Scholar
     

  • Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2019;173:291–304.

    Article 

    Google Scholar
     

  • Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386:556–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Sun W, Shi H, Ma H, Niu G, Li Y, et al. Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nat Commun. 2022;13:1–9.


    Google Scholar
     

  • Zhang B, Liu H, Wang Y, Zhang Y, Cheng J. Application of singlet oxygen-activatable nanocarriers to boost X-ray-induced photodynamic therapy and cascaded ferroptosis for breast cancer treatment. J Mater Chem B. 2023;11:9685–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain A, Koyani R, Muñoz C, Sengar P, Contreras OE, Juárez P, et al. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. J Colloid Interface Sci. 2018;526:220–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maiti D, Yu H, Kim BS, Naito M, Yamashita S, Kim HJ, et al. Rose Bengal decorated NaYF4: Tb nanoparticles for low dose X-ray-induced photodynamic therapy in cancer cells. ACS Appl Bio Mater. 2022;5:5477–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maiti D, Yu H, Mochida Y, Won S, Yamashita S, Naito M, et al. Terbium-Rose Bengal coordination nanocrystals-induced ROS production under low-dose X-rays in cultured cancer cells for photodynamic therapy. ACS Appl Bio Mater. 2023;6:2505–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Liu J, Li Y, Pandey NK, Chen T, Wang L, et al. Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioact Mater. 2022;7:504–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang B, Xue R, Lyu J, Gao A, Sun C. Tumor acidity/redox hierarchical-activable nanoparticles for precise combination of X-ray-induced photodynamic therapy and hypoxia-activated chemotherapy. J Mater Chem B. 2022;10:3849–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengar P, Juárez P, Meza AV, Arellano DL, Jain A, Chauhan K, et al. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. J Nanobiotechnol. 2018;16:1–19.

    Article 

    Google Scholar
     

  • Jiang F, Lee C, Zhang W, Jiang W, Cao Z, Chong HB, et al. Radiodynamic therapy with CsI(na)@MgO nanoparticles and 5-aminolevulinic acid. J Nanobiotechno. 2022;20:1–15.

    Article 

    Google Scholar
     

  • Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    Article 
    PubMed 

    Google Scholar
     

  • Cao J, Wang J, He C, Fang M. Angiosarcoma: a review of diagnosis and current treatment. Am J Cancer Res. 2019;9:2303–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzmaurice C, Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level results from the global burden of disease study 2015. JAMA Oncol. 2017;3:1683–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celsa C, Stornello C, Giuffrida P, Giacchetto CM, Grova M, Rancatore G, et al. Direct-acting antiviral agents and risk of Hepatocellular carcinoma: critical appraisal of the evidence. Ann Hepatol. 2022;27: 100568.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhen X, Pandey NK, Amador E, Hu W, Liu B, Nong W, et al. Potassium iodide enhances the anti-hepatocellular carcinoma effect of copper-cysteamine nanoparticle mediated photodynamic therapy on cancer treatment. Mater Today Phys. 2022;27: 100838.

    Article 
    CAS 

    Google Scholar
     

  • Vasuri F, Renzulli M, Fittipaldi S, Brocchi S, Clemente A, Cappabianca S, et al. Pathobiological and radiological approach for hepatocellular carcinoma subclassification. Sci Rep. 2019;9:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B. 2022;10:5323–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. The Lancet. 2021;398:535–54.

    Article 

    Google Scholar
     

  • Araujo LH, Horn L, Merritt RE, Shilo K, Xu-Welliver M, Carbone DP. 69—Cancer of the lung: non-small cell lung cancer and small cell lung cancer. In: Niederhuber JE, Armitage JO, Kastan MB, Doroshow JH, Tepper JE, editors. Abeloff’s clinical oncology. Amsterdam: Elsevier; 2020.


    Google Scholar
     

  • Jiang Y, Su Z, Liang H, Liu J, Liang W, He J. Video-assisted thoracoscopy for lung cancer: Who is the future of thoracic surgery? J Thorac Dis. 2020;12:4427–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker S, Dahele M, Lagerwaard FJ, Senan S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol. 2016;11:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Yang CC, Wang WY, Lin FH, Hou CH. Rare-earth-doped calcium carbonate exposed to X-ray irradiation to induce reactive oxygen species for tumor treatment. Int J Mol Sci. 2019;20:1148.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. The Lancet. 2016;387:1540–50.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Sun X, Wang GD, Nagata K, Hao Z, Wang A, et al. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater Horiz. 2017;4:1092–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi F, Bedogni E, Bigi F, Rimoldi T, Cristofolini L, Pinelli S, et al. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Sci Rep. 2015;5:1–6.

    Article 

    Google Scholar
     

  • Yang DM, Cvetkovic D, Chen L, Ma CMC. Therapeutic effects of in-vivo radiodynamic therapy (RDT) for lung cancer treatment: a combination of 15 MV photons and 5-aminolevulinic acid (5-ALA). Biomed Phys Eng Express. 2022;8: 065031.

    Article 

    Google Scholar
     

  • Sanchez G, Nova J, Rodriguez-Hernandez AE, Solorzano-Restrepo C, Gonzalez J, Olmos M, et al. Sun protection for preventing basal cell and squamous cell skin cancers. Cochrane Database Syst Rev. 2016;2016:1–32.


    Google Scholar
     

  • Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. Immunotargets Ther. 2018;7:35–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Fang L, Ni R, Zhang H, Pan G. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer. 2022;22:1–11.

    Article 

    Google Scholar
     

  • Shi L, Liu P, Wu J, Ma L, Zheng H, Antosh MP, et al. The effectiveness and safety of X-PDT for cutaneous squamous cell carcinoma and melanoma. Nanomedicine. 2019;14:2027–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Chen W, Schatte G, Wang W, Joly AG, Huang Y, et al. A new Cu-cysteamine complex: structure and optical properties. J Mater Chem C Mater. 2014;2:4239–46.

    Article 
    CAS 

    Google Scholar
     

  • Pandey NK, Chudal L, Phan J, Lin L, Johnson O, Xing M, et al. A facile method for the synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment. J Mater Chem B. 2019;7:6630–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi J, Murakami M, Mori T, Iwahashi H. Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci Rep. 2018;8:1–9.


    Google Scholar
     

  • Hasegawa T, Takahashi J, Nagasawa S, Doi M, Moriyama A, Iwahashi H. Dna strand break properties of protoporphyrin IX by X-ray irradiation against melanoma. Int J Mol Sci. 2020;21:2302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18:197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sameer AS. Colorectal cancer: molecular mutations and polymorphisms. Front Oncol. 2013;3:114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stintzing S. Management of colorectal cancer. Prime Rep. 2014;6:108.


    Google Scholar
     

  • Sang R, Deng F, Engel A, Goldys E, Deng W. Lipid-polymer nanocarrier platform enables X-ray induced photodynamic therapy against human colorectal cancer cells. Biomed Pharmacother. 2022;155: 113837.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan G, Ni K, Xu R, Lu K, Lin Z, Chan C, et al. Nanoscale metal–organic layers for deeply penetrating X-ray-induced photodynamic therapy. Angew Chem. 2017;56:12102–6.

    Article 
    CAS 

    Google Scholar
     

  • Deng W, McKelvey KJ, Guller A, Fayzullin A, Campbell JM, Clement S, et al. Application of mitochondrially targeted nanoconstructs to neoadjuvant X-ray-induced photodynamic therapy for rectal cancer. ACS Cent Sci. 2020;6:715–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    advance Biotechnology cancer Deep tumors Journa.. Molecular Medicine Nanotechnology ROS route Theranostic theranostics wonders X-PDT X-ray responsive imaging XPDT
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleTop 10 Energy Saving Gadgets for Your Smart Home (2024)
    Next Article Best Internet Providers in Albany, New York
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    A GSH-consuming polymeric nanoparticles drives ferroptosis amplificati…

    July 9, 2025
    Nanotechnology

    Rolling circle amplification/transcription-based nanotechnology for ef…

    July 8, 2025
    Nanotechnology

    Observation of chiral emission enabled by collective guided resonances

    July 6, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202474 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202540 Views

    Cisco Automation Developer Days 2025

    February 10, 202521 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    How to Use VN Code in VN Video Editor

    July 9, 2025

    Green is the New Gold: Smarter, Cleaner Mining

    July 9, 2025

    Siemens enters collaboration with Microsoft to enhance IoT interoperab…

    July 9, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.