Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Why Quirky, Aesthetic Products Dominate Social Media

May 21, 2025

Smart Solutions for Better Tracking |

May 21, 2025

TNT Sports Follows Inside the NBA Playbook Into Its Future

May 21, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Switching on and off the spin polarization of the conduction band in a…
Nanotechnology

Switching on and off the spin polarization of the conduction band in a…

Editor-In-ChiefBy Editor-In-ChiefMarch 12, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Switching on and off the spin polarization of the conduction band in a…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazin, I. Altermagnetism—a new punch line of fundamental magnetism. Phys. Rev. X 12, 040002 (2022).


    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

  • Yan, H., Zhou, X., Qin, P. & Liu, Z. Review on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 124, 030503 (2024).

    Article 

    Google Scholar
     

  • Sinova, J. et al. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 

    Google Scholar
     

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Šmejkal, L. et al. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article 

    Google Scholar
     

  • Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 

    Google Scholar
     

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, L.-D. et al. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article 

    Google Scholar
     

  • Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Article 

    Google Scholar
     

  • Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sierra, J. F. et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kurebayashi, H. et al. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat. Rev. Phys. 4, 150–166 (2022).

    Article 

    Google Scholar
     

  • Gong, S. J. et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc. Natl Acad. Sci. USA 115, 8511–8516 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, H., Niu, Y., Wu, X. & Yang, J. Electric-field tunable magnetism in van der Waals bilayers with A-type antiferromagnetic order: unipolar versus bipolar magnetic semiconductor. Nano Lett. 21, 7050–7055 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, J. et al. Two-dimensional bipolar ferromagnetic semiconductors from layered antiferromagnets. Phys. Rev. Mater. 5, 034005 (2021).

    Article 

    Google Scholar
     

  • Dang, W. et al. Electric-field-tunable spin polarization and carrier-transport anisotropy in an A-type antiferromagnetic van der Waals bilayer. Phys. Rev. Appl. 18, 064086 (2022).

    Article 

    Google Scholar
     

  • Marian, D. et al. Electrically tunable lateral spin-valve transistor based on bilayer CrI3. npj 2D Mater. Appl. 7, 42 (2023).

    Article 

    Google Scholar
     

  • Oostinga, J. B. et al. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Calder, S. et al. Magnetic structure and exchange interactions in the layered semiconductor CrPS4. Phys. Rev. B 102, 024408 (2020).

    Article 

    Google Scholar
     

  • Peng, Y. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (2020).

    Article 

    Google Scholar
     

  • Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, e2211653 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, F. et al. Magnetism-induced band-edge shift as the mechanism for magnetoconductance in CrPS4 transistors. Nano Lett. 23, 8140–8145 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Gutierrez-Lezama, I. & Morpurgo, A. F. Magneto-transport study in 2D magnetic semiconductor multi-terminal FET. Zenodo (2024).

  • Chang, J.-F. et al. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yao, F. et al. Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers. Nat. Commun. 14, 4969 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, M. et al. Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating. Nat. Electron. 6, 28–36 (2023).


    Google Scholar
     

  • Clark, A. E. & Callen, E. Néel ferrimagnets in large magnetic fields. J. Appl. Phys. 39, 5972–5982 (1968).

    Article 

    Google Scholar
     

  • Coey, J. M. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).

  • Zhuang, H. L. & Zhou, J. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4. Phys. Rev. B 94, 195307 (2016).

    Article 

    Google Scholar
     

  • Ye, C. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16, 11876–11883 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Condens. Matter Phys. 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Condens. Matter Phys. 29, 465901 (2017).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Prandini, G. et al. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).

    Article 

    Google Scholar
     

  • Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).

    Article 

    Google Scholar
     



  • Source link

    A.. band conduction general Magnetic properties and materials Materials Science Nanotechnology Nanotechnology and Microengineering polarization spin switching Two-dimensional materials
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleDemocrats Demand Answers on DOGE’s Use of AI
    Next Article Samsung Galaxy F16 5G announced as rebadged Galaxy M16
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Quantum Semiconductor Nanoclusters for Sustainable Hydrogen

    May 20, 2025
    Nanotechnology

    Novel nanoreactor combines antibiotic detection and degradation in a s…

    May 19, 2025
    Nanotechnology

    Nanoparticle-cell interface enables electromagnetic wireless programmi…

    May 18, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202463 Views

    Cisco Automation Developer Days 2025

    February 10, 202516 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202514 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Why Quirky, Aesthetic Products Dominate Social Media

    May 21, 2025

    Smart Solutions for Better Tracking |

    May 21, 2025

    TNT Sports Follows Inside the NBA Playbook Into Its Future

    May 21, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.