Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 579, 229–232 (2020).
Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).
Chen, M. et al. Comprehensive characterization of gas diffusion through graphene oxide membranes. J. Membr. Sci. 676, 121583 (2023).
Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).
Polotskaya, G. A., Andreeva, D. V. & El’yashevich, G. K. Investigation of gas diffusion through films of fullerene-containing poly(phenylene oxide). Tech. Phys. Lett. 25, 555–557 (1999).
Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).
Chen, M. et al. Control of gas selectivity and permeability through COF-GO composite membranes for sustainable decarbonization and hydrogen production. Carbon 219, 118855 (2024).
Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).
Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal–organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017).
Rooney, A. P. et al. Anomalous twin boundaries in two dimensional materials. Nat. Commun. 9, 3597 (2018).
Cranford, S. W. & Buehler, M. J. Packing efficiency and accessible surface area of crumpled graphene. Phys. Rev. B 84, 205451 (2011).
Haddad, K. et al. Crumpled graphene oxide for enhanced room temperature gas sensing: understanding the critical roles of surface morphology and functionalization. J. Mater. Chem. A 11, 447–459 (2023).
Luo, J. et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011).
Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, 1970).
Meshhal, M. & Kühn, O. Diffusion of water confined between graphene oxide layers: implications for membrane filtration. ACS Appl. Nano Mater. 5, 11119–11128 (2022).
Mouhat, F., Coudert, F.-X. & Bocquet, M.-L. Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566 (2020).
Chen, M. et al. Large-scale self-assembly of anisotropic graphene oxide films via blade coating: sustainable design and stimuli-responsive performance for biomimicry. Mater. Des. 233, 112205 (2023).
Ma, X., Zachariah, M. R. & Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 12, 486–489 (2012).
Wang, W.-N., Jiang, Y. & Biswas, P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J. Phys. Chem. Lett. 3, 3228–3233 (2012).
Song, S. et al. Facile synthesis of crumpled graphene oxide and its outstanding electrochemical performance as an anode in lithium ion batteries. J. Electron. Mater. 52, 877–886 (2023).
Kang, Y. et al. The role of nanowrinkles in mass transport across graphene‐based membranes. Adv. Funct. Mater. 30, 2003159 (2020).
Zhang, P. et al. Stress driven micron- and nano-scale wrinkles as a new class of transport pathways of two-dimensional laminar membranes towards molecular separation. J. Membr. Sci. 648, 120354 (2022).
Gabardo, C. M., Yang, J., Smith, N. J., Adams-McGavin, R. C. & Soleymani, L. Programmable wrinkling of self-assembled nanoparticle films on shape memory polymers. ACS Nano 10, 8829–8836 (2016).
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).
Wang, R. et al. Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nat. Commun. 14, 2161 (2023).
Wang, S. et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy Environ. Sci. 9, 3107–3112 (2016).
Li, P. et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020).
Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).
Katsnelson, M. I. The Physics of Graphene 2nd edn (Cambridge Univ. Press, 2020).
Davidovitch, B. & Guinea, F. Indentation of solid membranes on rigid substrates with van der Waals attraction. Phys. Rev. E 103, 043002 (2021).
Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).
Hure, J., Roman, B. & Bico, J. Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012).
Mezard, M., Parisi, G. & Virasoro, M. A. World Scientific Lecture Notes in Physics Vol. 9 (World Scientific, 1987).
Principi, A. & Katsnelson, M. I. Stripe glasses in ferromagnetic thin films. Phys. Rev. B 93, 054410 (2016).
Mauri, A. & Katsnelson, M. I. Frustrated magnets in the limit of infinite dimensions: dynamics and disorder-free glass transition. Phys. Rev. B 109, 144414 (2024).
Kamber, U. et al. Self-induced spin glass state in elemental and crystalline neodymium. Science 368, eaay6757 (2020).
Plummer, A., Hanakata, P. Z. & Nelson, D. R. Curvature as an external field in mechanical antiferromagnets. Phys. Rev. Mater. 6, 115203 (2022).
Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49, 62–69 (2011).
Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).
Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).