Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Jenna Ortega Worried That the ‘Wednesday’ Body Swap Episode Would Suck

November 11, 2025

The Hidden Impact of Data Centers on Climate & What You Can Do Locally

November 11, 2025

Building the future together: Microsoft and NVIDIA announce AI advance…

November 11, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Progress in cancer vaccines enabled by nanotechnology
Nanotechnology

Progress in cancer vaccines enabled by nanotechnology

Editor-In-ChiefBy Editor-In-ChiefOctober 19, 2025No Comments23 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Progress in cancer vaccines enabled by nanotechnology
Share
Facebook Twitter LinkedIn Pinterest Email


  • Wolchok, J. D. et al. Final, 10-year outcomes with nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 392, 11–22 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The future of engineered immune cell therapies. Science 378, 853–858 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P. et al. Immune checkpoint therapy—current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaynor, N., Crown, J. & Collins, D. M. Immune checkpoint inhibitors: key trials and an emerging role in breast cancer. Semin. Cancer Biol. 79, 44–57 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, S. A. & Minn, A. J. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48, 417–433 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sellars, M. C., Wu, C. J. & Fritsch, E. F. Cancer vaccines: building a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ninmer, E. K., Xu, F. & Slingluff, C. L. Jr The landmark series: cancer vaccines for solid tumors. Ann. Surg. Oncol. 32, 1443–1452 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsikis, P. D., Ishii, K. J. & Schliehe, C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 24, 213–227 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graciotti, M. & Kandalaft, L. E. Vaccines for cancer prevention: exploring opportunities and navigating challenges. Nat. Rev. Drug Discov. (2024).

  • Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, K. T. & Trimble, C. L. Current status of therapeutic HPV vaccines. Gynecol. Oncol. 156, 503–510 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Plaen, E. et al. Immunogenic (tum−) variants of mouse tumor P815: cloning of the gene of tum− antigen P91A and identification of the tum− mutation. Proc. Natl Acad. Sci. USA 85, 2274–2278 (1988).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 6, 254ra128 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Subudhi, S. K. et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci. Transl. Med. 12, eaaz3577 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, C. et al. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy. JAMA Netw. Open 6, e2311181 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 13, 974 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karakas, B., Bachman, K. E. & Park, B. H. Mutation of the PIK3CA oncogene in human cancers. Br. J. Cancer 94, 455–459 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann, M. H., Gerlach, D., Misale, S., Petronczki, M. & Kraut, N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 12, 924–937 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaventura, P. et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johanns, T. M. et al. Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncoimmunology 8, e1561106 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, D. A. et al. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma. Nature 639, 474–482 (2025). This phase I clinical trial evaluated personalized peptide vaccines targeting neoantigens in patients with renal cell carcinoma following successful surgical resection, with no relapse detected in nine out of nine vaccinated patients after 40 months of follow-up.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena, M. et al. Atezolizumab plus personalized neoantigen vaccination in urothelial cancer: a phase 1 trial. Nat. Cancer 6, 988–999 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carreno, B. M. et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everson, R. G. et al. TLR agonists polarize interferon responses in conjunction with dendritic cell vaccination in malignant glioma: a randomized phase II trial. Nat. Commun. 15, 3882 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, T. et al. Therapeutic cancer vaccines: advancements, challenges and prospects. Signal Transduct. Target. Ther. 8, 450 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rappaport, A. R. et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 30, 1013–1022 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmer, C. D. et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 28, 1619–1629 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Alise, A. M. et al. Phase I trial of viral vector-based personalized vaccination elicits robust neoantigen-specific antitumor T-cell responses. Clin. Cancer Res. 30, 2412–2423 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yarchoan, M. et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial. Nat. Med. 30, 1044–1053 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Neoantigen DNA vaccines are safe, feasible, and induce neoantigen-specific immune responses in triple-negative breast cancer patients. Genome Med. 16, 131 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Shea, A. E. et al. Phase II trial of nelipepimut-S peptide vaccine in women with ductal carcinoma in situ. Cancer Prev. Res. (Phila.) 16, 331–341 (2023).


    Google Scholar
     

  • Mittendorf, E. A. et al. Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin. Cancer Res. 25, 4248–4254 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montauti, E., Oh, D. Y. & Fong, L. CD4+ T cells in antitumor immunity. Trends Cancer 10, 969–985 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bijker, M. S. et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 38, 1033–1042 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosalia, R. A. et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T‐cell activation. Eur. J. Immunol. 43, 2554–2565 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuna, M., Mahdi, F., Chade, A. R. & Bidwell, G. L. Molecular size modulates pharmacokinetics, biodistribution, and renal deposition of the drug delivery biopolymer elastin-like polypeptide. Sci. Rep. 8, 7923 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. H. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781–803 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moynihan, K. D. et al. Enhancement of peptide vaccine immunogenicity by increasing lymphatic drainage and boosting serum stability. Cancer Immunol. Res. 6, 1025–1038 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böttger, R., Hoffmann, R. & Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS ONE 12, e0178943 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat. Commun. 11, 1110 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najafabadi, A. H. et al. Vaccine nanodiscs plus polyICLC elicit robust CD8+ T cell responses in mice and non-human primates. J. Control. Release 337, 168–178 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynn, G. M. et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38, 320–332 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynn, G. M. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teplensky, M. H. et al. Multi-antigen spherical nucleic acid cancer vaccines. Nat. Biomed. Eng. 7, 911–927 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22, 41–52 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2016). This study reported the development of synthetic lipid nanodiscs carrying neoantigen peptides and adjuvant molecules that showed efficient targeting to lymph nodes, leading to strong antitumour immunity in preclinical mouse models of cancer.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irvine, D. J., Aung, A. & Silva, M. Controlling timing and location in vaccines. Adv. Drug Deliv. Rev. 158, 91–115 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baharom, F. et al. Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment. Cell 185, 4317–4332.e15 (2022). This study demonstrated that nanoparticles carrying peptide antigens and molecular adjuvants administered intravenously can simultaneously target dendritic cells in lymphoid organs and directly accumulate in tumour tissues, triggering simultaneous priming of new T cell responses and remodelling the tumour microenvironment to promote antitumour immunity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014). This study demonstrated the concept of ‘albumin hitchhiking’ for the targeting of peptide antigens and molecular adjuvants to lymph nodes, showing this to be a very potent strategy for amplifying vaccine responses in preclinical mouse models of cancer.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rakhra, K. et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci. Immunol. 6, eabd8003 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep. 37, 110021 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pant, S. et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat. Med. 30, 531–542 (2024). This phase I study reported promising immunogenicity, relapse-free survival and overall survival for pancreatic cancer patients who were positive for circulating tumour biomarkers following surgical resection and received a lymph node-targeted peptide vaccine targeting mutant KRAS antigen.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devoe, C. E. et al. AMPLIFY-7P, a first-in-human safety and efficacy trial of adjuvant mKRAS-specific lymph node targeted amphiphile ELI-002 7P vaccine in patients with minimal residual disease–positive pancreatic and colorectal cancer. J. Clin. Oncol. 42, 2636–2636 (2024).

    Article 

    Google Scholar
     

  • Wainberg, Z. A. et al. Lymph node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: phase 1 AMPLIFY-201 trial final results. Nat. Med. (2025).

  • McNeil, L.K. et al. 1473 AMPLIFY-7P phase 1a: lymph node-targeted amphiphile therapeutic cancer vaccine in patients with high relapse risk KRAS mutated pancreatic ductal adenocarcinoma and colorectal cancer. J. Immunother. Cancer (2024).

  • Elicio Therapeutics. A study of ELI-002 7P in subjects with KRAS/NRAS mutated solid tumors (AMPLIFY-7P). ClinicalTrials.gov (2025).

  • Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016). This study demonstrated that mRNA carried in near-neutral-charge LPXs administered intravenously can effectively target, transfect and activate dendritic cells systemically, providing strong vaccine priming in preclinical mouse models, and reported early phase I vaccination data in cancer patients.

    Article 
    PubMed 

    Google Scholar
     

  • Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. M. et al. The phase 3 INTerpath-002 study design: individualized neoantigen therapy (INT) V940 (mRNA-4157) plus pembrolizumab vs placebo plus pembrolizumab for resected early-stage non-small-cell lung cancer (NSCLC). J. Clin. Oncol. 42, TPS8116 (2024).

    Article 

    Google Scholar
     

  • Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021). This study was one of the first to demonstrate that LNP formulations used for mRNA delivery have intrinsic adjuvant activity that promotes immunity to co-administered antigens.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbeke, R., Hogan, M. J., Loré, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2, 17056 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Carvalho, T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat. Med. 29, 2379–2380 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024). This randomized phase II clinical trial reported a substantially reduced risk of death due to recurrence in melanoma patients who received a personalized mRNA neoantigen-targeting vaccine in combination with checkpoint blockade versus checkpoint blockade alone.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ladwa, R. et al. 940TiP INTerpath-007: a phase II/III, adaptive, randomized study of neoadjuvant and adjuvant pembrolizumab (pembro) with V940 (mRNA-4157) for treatment of resectable locally advanced (LA) cutaneous squamous cell carcinoma (cSCC). Ann. Oncol. 35, S652–S653 (2024).

    Article 

    Google Scholar
     

  • Motzer, R. J. et al. INTerpath-004: a phase 2, randomized, double-blind study of adjuvant pembrolizumab (pembro) with V940 (mRNA-4157) or placebo for renal cell carcinoma (RCC). J. Clin. Oncol. 43, TPS610 (2025).

    Article 

    Google Scholar
     

  • Sonpavde, G. P. et al. Phase 1/2 INTerpath-005 study: V940 (mRNA-4157) plus pembrolizumab with or without enfortumab vedotin (EV) for resected high-risk muscle-invasive urothelial carcinoma (MIUC). J. Clin. Oncol. 43, TPS893 (2025).

    Article 

    Google Scholar
     

  • Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckley, M. et al. Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. Mol. Ther. 33, 1105–1117 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blizard, G. S. et al. Monitoring mRNA vaccine antigen expression in vivo using PET/CT. Nat. Commun. 16, 2234 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gainor, J. F. et al. T-cell responses to individualized neoantigen therapy mRNA-4157 (V940) alone or in combination with pembrolizumab in the phase 1 KEYNOTE-603 study. Cancer Discov. 14, 2209–2223 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Low, J. G. et al. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying Covid-19 mRNA vaccine. npj Vaccines 7, 161 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saraf, A. et al. An Omicron-specific, self-amplifying mRNA booster vaccine for COVID-19: a phase 2/3 randomized trial. Nat. Med. 30, 1363–1372 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Small circular RNAs as vaccines for cancer immunotherapy. Nat. Biomed. Eng. 9, 249–267 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, Z. et al. Recent advances and perspectives on the development of circular RNA cancer vaccines. npj Vaccines 10, 41 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • First self-amplifying mRNA vaccine approved. Nat. Biotechnol. 42, 4 (2024).

  • Yu, J. et al. Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy. Biomaterials 317, 123047 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777–787 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X. et al. The hybrid lipoplex induces cytoskeletal rearrangement via autophagy/RhoA signaling pathway for enhanced anticancer gene therapy. Nat. Commun. 16, 339 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grunwitz, C. et al. HPV16 RNA-LPX vaccine mediates complete regression of aggressively growing HPV-positive mouse tumors and establishes protective T cell memory. Oncoimmunology 8, e1629259 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salomon, N. et al. Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer. Cancer Immunol. Immunother. 71, 1975–1988 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez, J. et al. Autogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial. Nat. Med. 31, 152–164 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023). This paper reported results from a small phase I clinical trial showing that mRNA vaccines targeting personalized neoantigens were immunogenic and elicited encouraging recurrence-free and overall survival in pancreatic cancer patients at high risk for relapse following surgery.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sethna, Z. et al. RNA neoantigen vaccines prime long-lived CD8+ T cells in pancreatic cancer. Nature 639, 1042–1051 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendez-Gomez, H. R. et al. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 187, 2521–2535.e21 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haabeth, O. A. W. et al. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc. Natl Acad. Sci. USA 115, E9153–E9161 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Akiva, E., Chapman, A., Mao, T. & Irvine, D. J. Linking vaccine adjuvant mechanisms of action to function. Sci. Immunol. 10, eado5937 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pulendran, B., Arunachalam, P. S. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. (2021).

  • Zimmermann, J. et al. A novel prophylaxis strategy using liposomal vaccine adjuvant CAF09b protects against influenza virus disease. Int. J. Mol. Sci. 23, 1850 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mørk, S. K. et al. First in man study: Bcl-Xl_42-CAF®09b vaccines in patients with locally advanced prostate cancer. Front. Immunol. 14, 1122977 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mørk, S. K. et al. Dose escalation study of a personalized peptide-based neoantigen vaccine (EVX-01) in patients with metastatic melanoma. J. Immunother. Cancer 12, e008817 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banga, R. J., Chernyak, N., Narayan, S. P., Nguyen, S. T. & Mirkin, C. A. Liposomal spherical nucleic acids. J. Am. Chem. Soc. 136, 9866–9869 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrer, J. R. et al. Structure-dependent biodistribution of liposomal spherical nucleic acids. ACS Nano 14, 1682–1693 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meckes, B., Banga, R. J., Nguyen, S. T. & Mirkin, C. A. Enhancing the stability and immunomodulatory activity of liposomal spherical nucleic acids through lipid‐tail DNA modifications. Small 14, 1702909 (2018).

    Article 

    Google Scholar
     

  • Daniel, W. L., Lorch, U., Mix, S. & Bexon, A. S. A first-in-human phase 1 study of cavrotolimod, a TLR9 agonist spherical nucleic acid, in healthy participants: evidence of immune activation. Front. Immunol. 13, 1073777 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seenappa, L. M. et al. Amphiphile-CpG vaccination induces potent lymph node activation and COVID-19 immunity in mice and non-human primates. npj Vaccines 7, 128 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, J. T. et al. Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials 275, 120868 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speetjens, F. M. et al. Intradermal vaccination of HPV-16 E6 synthetic peptides conjugated to an optimized Toll-like receptor 2 ligand shows safety and potent T cell immunogenicity in patients with HPV-16 positive (pre-)malignant lesions. J. Immunother. Cancer 10, e005016 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhivaki, D. et al. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep. 33, 108381 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanoni, I., Tan, Y., Di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709.e3 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, M. et al. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci. Immunol. 6, eabf1152 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bengtsson, K. L., Morein, B. & Osterhaus, A. D. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert Rev. Vaccines 10, 401–403 (2011).

    Article 

    Google Scholar
     

  • Mochida, Y. & Uchida, S. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol. 21, 422–448 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, K. et al. Biodegradable lipid-modified poly(guanidine thioctic acid)s: a fortifier of lipid nanoparticles to promote the efficacy and safety of mRNA cancer vaccines. J. Am. Chem. Soc. 146, 11679–11693 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Omo-Lamai, S. et al. Limiting endosomal damage sensing reduces inflammation triggered by lipid nanoparticle endosomal escape. Nat. Nanotechnol. 20, 1285–1297 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, N. et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng. 8, 1483–1498 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. (2023).

  • Zhang, Y. et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2. Nano Lett. 23, 2593–2600 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Yan, W. & Huang, L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol. Immunother. 57, 517–530 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandhapudi, S. K. et al. Antigen priming with enantiospecific cationic lipid nanoparticles induces potent antitumor CTL responses through novel induction of a type I IFN response. J. Immunol. 202, 3524–3536 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rumfield, C. S., Pellom, S. T., Morillon, Y. M. II, Schlom, J. & Jochems, C. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. J. Immunother. Cancer 8, e000612 (2020).

    Article 

    Google Scholar
     

  • Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Iyer, B., Prasath, V. B. S., Ni, Y. & Salomonis, N. DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity. Brief. Bioinform. 22, bbab160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, J. et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep. Med. 2, 100194 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. DeepHLApan: a deep learning approach for neoantigen prediction considering both HLA-peptide binding and immunogenicity. Front. Immunol. 10, 2559 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, S. D. et al. Low mutation burden in ovarian cancer may limit the utility of neoantigen-targeted vaccines. PloS ONE 11, e0155189 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Chemical and topological design of multicapped mRNA and capped circular RNA to augment translation. Nat. Biotechnol. (2025).

  • Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Z. et al. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2+/PTBP1+ pan-adenocarcinoma. Nat. Cancer 5, 30–46 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morse, M. A. et al. Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther. 30, 803–811 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aliahmad, P., Miyake-Stoner, S. J., Geall, A. J. & Wang, N. S. Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Ther. 30, 785–793 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. Y. et al. Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs. Proc. Natl Acad. Sci. USA 111, 10708–10713 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oda, Y. et al. 12-month persistence of immune responses to self-amplifying mRNA COVID-19 vaccines: ARCT-154 versus BNT162b2 vaccine. Lancet Infect. Dis. (2024).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    cancer Drug delivery enabled general Materials Science Nanoparticles Nanotechnology Nanotechnology and Microengineering Nanotechnology in cancer progress Vaccines
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleMemory loss help: A neuroscientist on remembering better.
    Next Article I brought Nova Launcher’s best feature to my new launcher
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Researchers pin down the true cost of precision in quantum clocks – Ph…

    November 11, 2025
    Nanotechnology

    Twisted Graphene Shows Unconventional Superconductivity

    November 10, 2025
    Advertising

    Yahoo DSP Airs First-Ever CTV Ad Campaign, Starring Troy Hawke

    November 10, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202496 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202577 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202529 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Jenna Ortega Worried That the ‘Wednesday’ Body Swap Episode Would Suck

    November 11, 2025

    The Hidden Impact of Data Centers on Climate & What You Can Do Locally

    November 11, 2025

    Building the future together: Microsoft and NVIDIA announce AI advance…

    November 11, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.