Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

How to Add Links in Tweets Without Affecting Reach

December 23, 2025

Heat pumps could cool BC without demanding too much power

December 23, 2025

This Open Source EEG Board Brings Real Brain-Computer Interfaces Home

December 23, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Nanostructured niobium-doped nickel-rich multiphase positive electrode…
Nanotechnology

Nanostructured niobium-doped nickel-rich multiphase positive electrode…

Editor-In-ChiefBy Editor-In-ChiefDecember 23, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Nanostructured niobium-doped nickel-rich multiphase positive electrode…
Share
Facebook Twitter LinkedIn Pinterest Email


  • IEA. Global EV Outlook 2024 (IEA, 2024).

  • Andre, D. et al. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A 3, 6709–6732 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X.-G., Liu, T., Ge, S., Rountree, E. & Wang, C.-Y. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft. Joule 5, 1644–1659 (2021).

    Article 

    Google Scholar
     

  • Ayyaswamy, A., Vishnugopi, B. S. & Mukherjee, P. P. Revealing hidden predicaments to lithium-ion battery dynamics for electric vertical take-off and landing aircraft. Joule 7, 2016–2034 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Park, N.-Y. et al. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior. ACS Energy Lett. 7, 2362–2369 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1−x−y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ni, L. et al. Atomical reconstruction and cationic reordering for nickel-rich layered cathodes. Adv. Energy Mater. 12, 2103757 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, U.-H., Kuo, L.-Y., Kaghazchi, P., Yoon, C. S. & Sun, Y.-K. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS Energy Lett. 4, 576–582 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Park, G.-T. et al. Nano-rods in Ni-rich layered cathodes for practical batteries. Chem. Soc. Rev. 53, 11462–11518 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nat. Commun. 11, 83 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H. H. et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 12, 6552 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, H.-H., Lim, H.-W., Lee, S. G. & Sun, Y.-K. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries. Nat. Energy 9, 47–56 (2023).

    Article 

    Google Scholar
     

  • Kaur, G. & Gates, B. D. Review—surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance. J. Electrochem. Soc. 169, 043504 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Mitigating planar gliding in single-crystal nickel-rich cathodes through multifunctional composite surface engineering. Adv. Energy Mater. 14, 2303764 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J., Yan, P., Estevez, L., Wang, C. & Zhang, J.-G. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy 49, 538–548 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ying, B. et al. Monitoring the formation of nickel-poor and nickel-rich oxide cathode materials for lithium-ion batteries with synchrotron radiation. Chem. Mater. 35, 1514–1526 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, S. H. et al. Toward a nanoscale-defect-free Ni-rich layered oxide cathode through regulated pore evolution for long-lifespan Li rechargeable batteries. Adv. Funct. Mater. 34, 2306654 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jo, S. et al. Solid-state reaction heterogeneity during calcination of lithium-ion battery cathode. Adv. Mater. 35, e2207076 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Park, H. et al. In-situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, N.-Y. et al. Mechanism of doping with high-valence elements for developing Ni-rich cathode materials. Adv. Energy Mater. 13, 2301530 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Park, N.-Y. et al. Tailoring primary particle size distribution to suppress microcracks in Ni-rich cathodes via controlled grain coarsening. ACS Energy Lett. 9, 3595–3604 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Intralattice-bonded phase-engineered ultrahigh-Ni single-crystalline cathodes suppress strain evolution. Nat. Energy 10, 1001–1012 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Park, G.-T. et al. High-performance Ni-rich Li[Ni0.9−xCo0.1Alx]O2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide. Energy Environ. Sci. 14, 5084–5095 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kirchheim, R. Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413–419 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Jo, S., Kim, S. & Lim, J. TXM-Pal: a companion software for advanced data processing in spectroscopic X-ray microscopy. J. Synchrotron Radiat. 32, 815–822 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamam, I. et al. Correlating the mechanical strength of positive electrode material particles to their capacity retention. Cell Rep. Phys. Sci. 3, 100714 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, H.-H. et al. A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries. Mater. Today 36, 73–82 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Komurcuoglu, C., West, A. C. & Urban, A. Mechanism of the layered-to-spinel phase transformation in Li0.5NiO2. ACS Appl. Energy Mater. 7, 10784–10794 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chazel, C., Ménétrier, M., Carlier, D., Croguennec, L. & Delmas, C. DFT modeling of NMR contact shift mechanism in the ideal LiNi2O4 spinel and application to thermally treated Layered Li0.5NiO2. Chem. Mater. 19, 4166–4173 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ku, K. et al. A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy Environ. Sci. 13, 1269–1278 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Prieto, P. et al. Spinel to disorder rock-salt structural transition on (111) nickel ferrite thin films tailored by Ni content. J. Alloys Compd. 910, 164905 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ates, M. N., Mukerjee, S. & Abraham, K. M. A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Adv. 5, 27375–27386 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J. Electrochem. Soc. 165, A2682–A2695 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shao, Y. et al. Lithium-ion conductive coatings for nickel-rich cathodes for lithium-ion batteries. Small Methods 8, e2400256 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, F. et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 25, 3722–3726 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bills, A. et al. A battery dataset for electric vertical takeoff and landing aircraft. Sci. Data 10, 344 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, M. et al. Lithium-ion battery power performance assessment for the climb step of an electric vertical takeoff and landing (eVTOL) application. ACS Energy Lett. 9, 934–940 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, M. et al. Battery electrolyte design for electric vertical takeoff and landing (eVTOL) platforms. Adv. Energy Mater. 14, 2400772 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fredericks, W. L., Sripad, S., Bower, G. C. & Viswanathan, V. Performance metrics required of next-generation batteries to electrify vertical takeoff and landing (VTOL) aircraft. ACS Energy Lett. 3, 2989–2994 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Scurtu, R. et al. From small batteries to big claims. Nat. Nanotech. 20, 970–976 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hiramatsu, Y., Oka, Y. & Kiyama, H. Rapid determination of the tensile strength of rocks with irregular test pieces. J. MMIJ 81, 1024–1030 (1965).


    Google Scholar
     



  • Source link

    Batteries electrode general Materials Science multiphase Nanostructured Nanotechnology Nanotechnology and Microengineering nickelrich niobiumdoped Positive
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Best Netflix Christmas Movies That Aren't Rom-Coms
    Next Article Android Developers Blog: Media3 1.9.0
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Higgs decay to muon–antimuon pairs sheds light on the origin of mass –…

    December 22, 2025
    Nanotechnology

    Safer, Cheaper Method for Creating Futuristic MXenes

    December 21, 2025
    Nanotechnology

    Hidden dimensions could explain where mass comes from

    December 20, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 2024111 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202577 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202534 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    How to Add Links in Tweets Without Affecting Reach

    December 23, 2025

    Heat pumps could cool BC without demanding too much power

    December 23, 2025

    This Open Source EEG Board Brings Real Brain-Computer Interfaces Home

    December 23, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.