Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).
Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).
Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).
Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
Liu, T. et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 12, 6024 (2021).
Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).
Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).
Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).
Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).
Xu, G. L. et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).
Zhou, Y. N. et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).
Mukhopadhyay, A. & Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).
Stallard, J. C. et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 6, 984–1007 (2022).
Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).
Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi(1–x–y)Co(x)Mn(y)O(2) lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).
Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).
Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).
Zhao, X. & Ceder, G. Zero-strain cathode materials for Li-ion batteries. Joule 6, 2683–2685 (2022).
Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).
Zhang, W. et al. Ni-rich LiNi0·8Co0·1Mn0·1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries. Electrochim. Acta 340, 135871 (2020).
Yu, H. et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nat. Commun. 12, 4564 (2021).
Goonetilleke, D. et al. Alleviating anisotropic volume variation at comparable Li utilization during cycling of Ni-rich, Co-free layered oxide cathode materials. J. Phys. Chem. C 126, 16952–16964 (2022).
Li, H. et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?. J. Electrochem. Soc. 166, A429–A439 (2019).
Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).
Aishova, A., Park, G. T., Yoon, C. S. & Sun, Y. K. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv. Energy Mater. 10, 1903179 (2019).
Sun, Y. K., Lee, D. J., Lee, Y. J., Chen, Z. & Myung, S. T. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013).
Park, G.-T. et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat. Energy 7, 946–954 (2022).
Li, W., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).
Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode materials. Chem. Mater. 31, 9769–9776 (2019).
Qian, G. et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Storage Mater. 27, 140–149 (2020).
Langdon, J. & Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 37, 143–160 (2021).
Shi, J.-L. et al. Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. Natl Sci. Rev. 10, nwac226 (2023).
Moiseev, I. A. et al. Single crystal Ni-rich NMC cathode materials for lithium-ion batteries with ultra-high volumetric energy density. Energy Adv. 1, 677–681 (2022).
Ge, M. et al. Kinetic limitations in single-crystal high-nickel cathodes. Angew. Chem. Int. Ed. 60, 17350–17355 (2021).
Zou, Y. G. et al. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode via surface gradient penetration of tantalum. Angew. Chem. Int. Ed. 60, 26535–26539 (2021).
Pandurangi, S. S., Hall, D. S., Grey, C. P., Deshpande, V. S. & Fleck, N. A. Chemo-mechanical analysis of lithiation/delithiation of Ni-rich single crystals. J. Electrochem. Soc. 170, 050531 (2023).
Liu, J. et al. Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes. Angew. Chem. Int. Ed. 62, e202302547 (2023).
Fan, X. et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 12, 5320 (2021).
Sun, J. et al. The origin of high-voltage stability in single-crystal layered Ni-rich cathode materials. Angew. Chem. Int. Ed. 61, e202207225 (2022).
Kim, K.-E. et al. Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries. J. Power Sources 601, 234300 (2024).
Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).
Heenan, T. M. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 10, 2002655 (2020).
Yang, B. Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes (Academic Press, 2005).
Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).
Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).
Zheng, J. et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc. Chem. Res. 52, 2201–2209 (2019).
Liu, S. et al. Origin of phase separation in Ni-rich layered oxide cathode materials during electrochemical cycling. Chem. Mater. 35, 8857–8871 (2023).
Jousseaume, T., Colin, J.-F., Chandesris, M., Lyonnard, S. & Tardif, S. Strain and collapse during lithiation of layered transition metal oxides: a unified picture. Energy Environ. Sci. 17, 2753–2764 (2024).
Ogley, M. J. et al. Metal–ligand redox in layered oxide cathodes for Li-ion batteries. Joule 9, 101775 (2025).
Li, H., Zhang, N., Li, J. & Dahn, J. R. Updating the structure and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J. Electrochem. Soc. 165, A2985–A2993 (2018).
Olszewski, W. et al. The role of the local structural properties in the electrochemical characteristics of Na1–xFe1–yNiyO2 cathodes. Mater. Today Energy 40, 101519 (2024).
Mao, Y. et al. High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material. Adv. Funct. Mater. 29, 1900247 (2019).
Ryu, H.-H. et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 6, 2726–2734 (2021).
Yu, H. et al. Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage Ni-rich cathodes. Natl Sci. Rev. 10, nwac166 (2023).
Balasubramanian, M., Sun, X., Yang, X. & McBreen, J. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries. J. Power Sources 92, 1–8 (2001).
Usoltsev, O. et al. Operando multi-edge XAS to reveal the effect of Co in Li-and Mn-rich NMC Li-ion cathodes. Mater. Today Energy 50, 101853 (2025).
Sun, H.-H. & Manthiram, A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem. Mater. 29, 8486–8493 (2017).
Qian, D., Xu, B., Chi, M. & Meng, Y. S. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014).
Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).
Scurtu, R.-G. et al. From small batteries to big claims. Nat. Nanotechnol. 20, 970–976 (2025).
Chien, Y.-C. et al. Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method. Nat. Commun. 14, 2289 (2023).
Schied, T. et al. Determining the diffusion coefficient of lithium insertion cathodes from GITT measurements: theoretical analysis for low temperatures. ChemPhysChem 22, 885–893 (2021).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).
Tallman, K. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and extended cycling effects using operando X-ray absorption spectroscopy. J. Phys. Chem. C 125, 58–73 (2020).
Chen, C.-H. et al. Operando X-ray diffraction and X-ray absorption studies of the structural transformation upon cycling excess Li layered oxide Li[Li1/18Co1/6Ni1/3Mn4/9]O2 in Li ion batteries. J. Mater. Chem. A 3, 8613–8626 (2015).
Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014).
Williamson, G. & Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953).
Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).
Chahine, G. A. et al. Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping. J. Appl. Crystallogr. 47, 762–769 (2014).
Xiao, X., Xu, Z., Lin, F. & Lee, W.-K. TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis. J. Synchrotron Radiat. 29, 266–275 (2022).
Xiao, X., Xu, Z., Hou, D., Yang, Z. & Lin, F. Rigid registration algorithm based on the minimization of the total variation of the difference map. J. Synchrotron Radiat. 29, 1085–1094 (2022).

