Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Why Quirky, Aesthetic Products Dominate Social Media

May 21, 2025

Smart Solutions for Better Tracking |

May 21, 2025

TNT Sports Follows Inside the NBA Playbook Into Its Future

May 21, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Intracellular dehydrogenation catalysis leads to reductive stress and …
Nanotechnology

Intracellular dehydrogenation catalysis leads to reductive stress and …

Editor-In-ChiefBy Editor-In-ChiefFebruary 20, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Intracellular dehydrogenation catalysis leads to reductive stress and …
Share
Facebook Twitter LinkedIn Pinterest Email


  • Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. et al. Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nat. Commun. 12, 3484 (2021).


    Google Scholar
     

  • Wiederkehr, A. & Demaurex, N. Illuminating redox biology using NADH- and NADPH-specific sensors. Nat. Methods 14, 671–672 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cracan, V., Titov, D. V., Shen, H., Grabarek, Z. & Mootha, V. K. A genetically encoded tool for manipulation of NADP+/NADPH in living cells. Nat. Chem. Biol. 13, 1088–1095 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peoples, J. N. et al. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1–13 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laforge, M. et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 20, 515–516 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manford, A. G. et al. A cellular mechanism to detect and alleviate reductive stress. Cell 183, 46–61 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, W. & Loscalzo, J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 32, 1330–1347 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, X. et al. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part. Fibre Toxicol. 14, 13 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R. et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity mode. ACS Nano 12, 1390–1402 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Arsenene nanodots with selective killing effects and their low-dose combination with β-elemene for cancer therapy. Adv. Mater. 33, 2102054 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gan, S. et al. Size optimization of organic nanoparticles with aggregation-induced emission characteristics for improved ROS generation and photodynamic cancer cell ablation. Small 18, 2202242 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nat. Commun. 12, 3393 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. et al. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nat. Commun. 12, 7270 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, B. et al. Sodium bicarbonate nanoparticles for amplified cancer immunotherapy by inducing pyroptosis and regulating lactic acid metabolism. Angew. Chem. Int. Ed. 135, 202307706 (2023).

    Article 

    Google Scholar
     

  • Bao, W. et al. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun. 12, 6399 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, Q. et al. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat. Commun. 12, 2304 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–108 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christians, E. S. & Benjamin, I. J. Proteostasis and REDOX state in the heart. Am. J. Physiol. Heart Circ. Physiol. 302, 24–37 (2012).

    Article 

    Google Scholar
     

  • Xi, Z. et al. Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J. Am. Chem. Soc. 143, 2660–2664 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manoj, K. M. et al. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: interactive dynamics of dehydrogenases, protons, and oxygen. J. Cell. Physiol. 237, 1902–1922 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 9, 1803369 (2019).

    Article 

    Google Scholar
     

  • Ai, X. et al. Transition-metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 59, 3961–3965 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Croft, D. P. et al. The effect of air pollution on the transcriptomics of the immune response to respiratory infection. Sci. Rep. 11, 19436 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S. et al. Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nat. Commun. 11, 3484 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcais, A. & Walzer, T. An immunosuppressive pathway for tumor progression. Nat. Med. 24, 260–261 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 548–524 (2005).

    Article 

    Google Scholar
     

  • Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat. Immunol. 23, 1495–1506 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajasekaran, N. S. et al. Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid. Redox Signal. 14, 957–971 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dialynas, G. et al. Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway. PLoS Genet. 11, 1005231 (2015).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55, 1412–1417 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, M., Papagiannakopoulos, T. & Bar-Peled, L. Reductive stress in cancer: coming out of the shadows. Trends Cancer 10, 103–112 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talwar, D. et al. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells. Nat. Metab. 5, 660–676 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kashif, M. et al. ROS-lowering doses of vitamins C and A accelerate malignant melanoma metastasis. Redox Biol. 60, 102619 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, M. et al. Nano-enabled quenching of bacterial communications for the prevention of biofilm formation. Angew. Chem. Int. Ed. 135, 202305485 (2023).

    Article 

    Google Scholar
     

  • Wu, D. et al. Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells. J. Am. Chem. Soc. 142, 19602–19610 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Doped graphene to mimic the bacterial NADH oxidase for one-step NAD+ supplementation in mammals. J. Am. Chem. Soc. 145, 3108–3120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, M. et al. Engineering catalytic dephosphorylation reaction for endotoxin inactivation. Nano Today 44, 101456 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Q. et al. Discovery of lipoxygenase-like materials for inducing ferroptosis. ACS Nano 18, 32438–32450 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Exploring nanozymes for organic substrates: building nano-organelles. Angew. Chem. Int. Ed. 63, 202408277 (2024).


    Google Scholar
     

  • Han, G. et al. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Catalysis dehydrogenation general Intracellular leads Materials Science Nanotechnology Nanotechnology and Microengineering Nanotoxicology reductive stress
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Odds of a City-Killing Asteroid Hitting Earth Keep Rising
    Next Article Twitch caps streamers’ storage at 100 hours of highlights and uploads
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Quantum Semiconductor Nanoclusters for Sustainable Hydrogen

    May 20, 2025
    Nanotechnology

    Novel nanoreactor combines antibiotic detection and degradation in a s…

    May 19, 2025
    Nanotechnology

    Nanoparticle-cell interface enables electromagnetic wireless programmi…

    May 18, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202463 Views

    Cisco Automation Developer Days 2025

    February 10, 202516 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202514 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Why Quirky, Aesthetic Products Dominate Social Media

    May 21, 2025

    Smart Solutions for Better Tracking |

    May 21, 2025

    TNT Sports Follows Inside the NBA Playbook Into Its Future

    May 21, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.