Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).
Lee, C. et al. Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nat. Commun. 12, 3484 (2021).
Wiederkehr, A. & Demaurex, N. Illuminating redox biology using NADH- and NADPH-specific sensors. Nat. Methods 14, 671–672 (2017).
Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010).
Cracan, V., Titov, D. V., Shen, H., Grabarek, Z. & Mootha, V. K. A genetically encoded tool for manipulation of NADP+/NADPH in living cells. Nat. Chem. Biol. 13, 1088–1095 (2017).
Peoples, J. N. et al. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1–13 (2019).
Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).
Laforge, M. et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 20, 515–516 (2020).
Manford, A. G. et al. A cellular mechanism to detect and alleviate reductive stress. Cell 183, 46–61 (2020).
Xiao, W. & Loscalzo, J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 32, 1330–1347 (2020).
Cai, X. et al. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part. Fibre Toxicol. 14, 13 (2017).
Li, R. et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity mode. ACS Nano 12, 1390–1402 (2018).
Liu, C. et al. Arsenene nanodots with selective killing effects and their low-dose combination with β-elemene for cancer therapy. Adv. Mater. 33, 2102054 (2021).
Gan, S. et al. Size optimization of organic nanoparticles with aggregation-induced emission characteristics for improved ROS generation and photodynamic cancer cell ablation. Small 18, 2202242 (2022).
Yang, B. et al. Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nat. Commun. 12, 3393 (2021).
Sun, J. et al. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nat. Commun. 12, 7270 (2021).
Ding, B. et al. Sodium bicarbonate nanoparticles for amplified cancer immunotherapy by inducing pyroptosis and regulating lactic acid metabolism. Angew. Chem. Int. Ed. 135, 202307706 (2023).
Bao, W. et al. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun. 12, 6399 (2021).
Jia, Q. et al. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat. Commun. 12, 2304 (2021).
Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–108 (2021).
Christians, E. S. & Benjamin, I. J. Proteostasis and REDOX state in the heart. Am. J. Physiol. Heart Circ. Physiol. 302, 24–37 (2012).
Xi, Z. et al. Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J. Am. Chem. Soc. 143, 2660–2664 (2021).
Manoj, K. M. et al. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: interactive dynamics of dehydrogenases, protons, and oxygen. J. Cell. Physiol. 237, 1902–1922 (2022).
Li, Q. et al. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 9, 1803369 (2019).
Ai, X. et al. Transition-metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 59, 3961–3965 (2020).
Croft, D. P. et al. The effect of air pollution on the transcriptomics of the immune response to respiratory infection. Sci. Rep. 11, 19436 (2021).
Xu, S. et al. Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nat. Commun. 11, 3484 (2020).
Marcais, A. & Walzer, T. An immunosuppressive pathway for tumor progression. Nat. Med. 24, 260–261 (2018).
Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 548–524 (2005).
Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat. Immunol. 23, 1495–1506 (2022).
Rajasekaran, N. S. et al. Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid. Redox Signal. 14, 957–971 (2011).
Dialynas, G. et al. Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway. PLoS Genet. 11, 1005231 (2015).
Zhang, X. et al. Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension 55, 1412–1417 (2010).
Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).
Ge, M., Papagiannakopoulos, T. & Bar-Peled, L. Reductive stress in cancer: coming out of the shadows. Trends Cancer 10, 103–112 (2024).
Talwar, D. et al. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells. Nat. Metab. 5, 660–676 (2023).
Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019).
Kashif, M. et al. ROS-lowering doses of vitamins C and A accelerate malignant melanoma metastasis. Redox Biol. 60, 102619 (2023).
Gao, M. et al. Nano-enabled quenching of bacterial communications for the prevention of biofilm formation. Angew. Chem. Int. Ed. 135, 202305485 (2023).
Wu, D. et al. Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells. J. Am. Chem. Soc. 142, 19602–19610 (2020).
Liu, X. et al. Doped graphene to mimic the bacterial NADH oxidase for one-step NAD+ supplementation in mammals. J. Am. Chem. Soc. 145, 3108–3120 (2023).
Gao, M. et al. Engineering catalytic dephosphorylation reaction for endotoxin inactivation. Nano Today 44, 101456 (2022).
Xie, Q. et al. Discovery of lipoxygenase-like materials for inducing ferroptosis. ACS Nano 18, 32438–32450 (2024).
Liu, X. et al. Exploring nanozymes for organic substrates: building nano-organelles. Angew. Chem. Int. Ed. 63, 202408277 (2024).
Han, G. et al. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).