Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

September 27, 2025

Study presents blueprint for hydrogen-powered UAVs

September 27, 2025

Your Autonomous Construction Business – Connected World

September 27, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Intestinal nanoparticle delivery and cellular response: a review of th…
Nanotechnology

Intestinal nanoparticle delivery and cellular response: a review of th…

Editor-In-ChiefBy Editor-In-ChiefNovember 2, 2024No Comments30 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Intestinal nanoparticle delivery and cellular response: a review of th…
Share
Facebook Twitter LinkedIn Pinterest Email


  • Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: the contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev. 2023;203:115130.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller MK, Chapa-Villarreal FA, Oldenkamp HF, Elder MG, Venkataraman AK, Peppas NA. Stimuli-responsive self-assembled polymer nanoparticles for the oral delivery of antibodies. J Control Release. 2023;361:246–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and Clearance. ACS Nano. 2023;17(21):20825–49.

    Article 
    PubMed 

    Google Scholar
     

  • Zhuo Y, Luo Z, Zhu Z, Wang J, Li X, Zhang Z, Guo C, Wang B, Nie D, Gan Y, Hu G, Yu M. Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes. Nat Nanotechnol 2024. https://doi.org/10.1038/s41565-024-01785-0

  • Hunt NJ, Lockwood GP, Heffernan SJ, Daymond J, Ngu M, Narayanan RK, Westwood LJ, Mohanty B, Esser L, Williams CC, Kuncic Z, McCourt PAG, Le Couteur DG, Cogger VC. Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycaemia. Nat Nanotechnol. 2024;19(4):534–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv. 2017;24(1):569–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelaseyed T, Hansson GC. Membrane mucins of the intestine at a glance. J Cell Sci. 2020;133(5):jcs240929.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benoit DSW, Sims KR Jr, Fraser D. Nanoparticles for oral biofilm treatments. ACS Nano. 2019;13(5):4869–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug delivery (Nano)platforms for oral and Dental Applications: tissue regeneration, infection control, and Cancer Management. Adv Sci (Weinh). 2021;8(8):2004014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Luo Y. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions. Nanoscale. 2019;11(23):11048–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Research Progress on the mechanism of nanoparticles crossing the intestinal epithelial cell membrane. Pharmaceutics. 2023;15(7):1816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev. 2022;188:114403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for targeting the small intestine. AAPS PharmSciTech. 2020;22(1):3.

    Article 
    PubMed 

    Google Scholar
     

  • Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise subcellular organelle targeting for boosting endogenous-stimuli-mediated Tumor Therapy. Adv Mater. 2021;33(51):e2101572.

    Article 
    PubMed 

    Google Scholar
     

  • Li Q, Xia D, Tao J, Shen A, He Y, Gan Y, et al. Self-assembled core-shell-type lipid-polymer hybrid nanoparticles: intracellular trafficking and relevance for oral absorption. J Pharm Sci. 2017;106(10):3120–30.

  • Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, Nibert ML, Kirchhausen T. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell. 2004;118(5):591–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Tiruppathi C, Cho J, Minshall RD, Malik AB. Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life. 2011;63(8):659–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16(3):266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med. 2022;83:100993.

    Article 
    PubMed 

    Google Scholar
     

  • Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: key to more efficient oral drug delivery systems. Adv Colloid Interface Sci. 2023;313:102848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across intestinal tissue: an oral delivery perspective. ACS Nano. 2023;17(14):13044–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang M, Zhang Y, Niu X, Liu Z, Yue T, Zhang W. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis. J Mater Chem B. 2023;11(27):6319–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurnani P, Sanchez-Cano C, Xandri-Monje H, Zhang J, Ellacott SH, Mansfield EDH, Hartlieb M, Dallmann R, Perrier S. Probing the Effect of Rigidity on the Cellular Uptake of Core-Shell nanoparticles: Stiffness effects are size dependent. Small. 2022;18(38):e2203070.

    Article 
    PubMed 

    Google Scholar
     

  • Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, Li Y, Shi Y. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnol. 2021;19(1):32.

    Article 
    CAS 

    Google Scholar
     

  • Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal. 2022;97:110399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21(6):1118–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Ke J, Guo X, Gou K, Sang Z, Wang Y, Bian Y, Li S, Li H. Chiral mesoporous silica nano-screws as an efficient biomimetic oral drug delivery platform through multiple topological mechanisms. Acta Pharm Sin B. 2022;12(3):1432–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou T, Wang J, Han C, Shao X, Zhang J, Lu W. Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers. Int J Biol Macromol. 2019;138:791–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao YB, Chen KH, Chen CT, Mi FL, Lin YJ, Chang Y, Chiang CS, Wang JT, Lin KJ, Sung HW. A noninvasive gut-to-brain oral drug delivery system for treating brain tumors. Adv Mater. 2021;33(34):e2100701.

    Article 
    PubMed 

    Google Scholar
     

  • Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide nanoparticles for efficient Cellular internalization and endosomal escape. Nanomaterials (Basel). 2020;10(9):1816.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng F, Zhang H, Wang X, Zhang Y, Hu H, Song S, Dai W, He B, Zheng Y, Wang X, Zhang Q. Transmembrane pathways and mechanisms of rod-like Paclitaxel nanocrystals through MDCK polarized monolayer. ACS Appl Mater Interfaces. 2017;9(7):5803–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Gao W, Jin H, Mao C, Zhang Y, Wang X, Mei D, Zhao L. Cellular Uptake and Transport mechanism of 6-Mercaptopurine nanomedicines for enhanced oral bioavailability. Int J Nanomed. 2023;18:79–94.

    Article 
    CAS 

    Google Scholar
     

  • Mellman I, Nelson WJ. Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Bio. 2008;9(11):833–45.

    Article 
    CAS 

    Google Scholar
     

  • Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. Nanoscale Adv. 2020;3(1):10–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. Res (Wash D C). 2023;6:0148.

    CAS 

    Google Scholar
     

  • Li X, Jafari SM, Zhou F, Hong H, Jia X, Mei X, Hou G, Yuan Y, Liu B, Chen S, Gong Y, Yan H, Chang R, Zhang J, Ren F, Li Y. The intracellular fate and transport mechanism of shape, size and rigidity varied nanocarriers for understanding their oral delivery efficiency. Biomaterials. 2023;294:121995.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Deng H, Lin Y, Wang X, He B, Dai W, Zhang H, Zheng Y, Zhang Q, Wang X. A common strategy to improve transmembrane transport in polarized epithelial cells based on sorting signals: guiding nanocarriers to TGN rather than to the basolateral plasma membrane directly. J Control Release. 2021;339:430–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joris F, De Backer L, Van de Vyver T, Bastiancich C, De Smedt SC, Raemdonck K. Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells. J Control Release. 2018;269:266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Zheng Y, Wu L, Zhu X, Zhang Z, Huang Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malik S, Saltzman WM, Bahal R. Extracellular vesicles mediated exocytosis of antisense peptide nucleic acids. Mol Ther Nucleic Acids. 2021;25:302–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sipos A, Kim KJ, Chow RH, Flodby P, Borok Z, Crandall ED. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L286–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang D, Feng Y, Yuan Y, Zhang L, Zhou Y, Midgley AC, Wang Y, Liu N, Li G, Yao X, Liu D. Protein coronas derived from mucus act as both Spear and Shield to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes. ACS Nano. 2024;18(10):7455–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen LQ, Liu CD, Xiang YC, Lyu JY, Zhou Z, Gong T, Gao HL, Li L, Huang Y. Exocytosis blockade of endoplasmic reticulum-targeted nanoparticle enhances immunotherapy. Nano Today. 2022;42:101356.

    Article 
    CAS 

    Google Scholar
     

  • Xing L, Zheng Y, Yu Y, Wu R, Liu X, Zhou R, Huang Y. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. J Mater Chem B. 2021;9(6):1707–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He B, Lin P, Jia Z, Du W, Qu W, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013;34(25):6082–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin Y, Yang J, Pan Y, Guo Z, Gao Y, Huang L, Zhou D, Ge Y, Guo F, Zhu W, Song Y, Li Y. Chylomicrons-simulating sustained drug release in Mesenteric Lymphatics for the treatment of Crohn’s-Like Colitis. J Crohns Colitis. 2021;15(4):631–46.

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida T, Kojima H, Sako K, Kondo H. Drug delivery to the intestinal lymph by oral formulations. Pharm Dev Technol. 2022;27(2):175–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng F, Kim KS, Moon J, Bae YH. Bile acid conjugation on solid nanoparticles enhances ASBT-Mediated endocytosis and chylomicron pathway but weakens the transcytosis by Inducing Transport Flow in a Cellular negative feedback Loop. Adv Sci (Weinh). 2022;9(21):e2201414.

    Article 
    PubMed 

    Google Scholar
     

  • Yang D, Liu D, Qin M, Chen B, Song S, Dai W, Zhang H, Wang X, Wang Y, He B, Tang X, Zhang Q. Intestinal mucin induces more endocytosis but less transcytosis of nanoparticles across enterocytes by triggering Nanoclustering and strengthening the Retrograde Pathway. ACS Appl Mater Interfaces. 2018;10(14):11443–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Bai Y, Liu M, Li L, Shan W, Zhang Z, Huang Y. Transport mechanisms of Butyrate Modified nanoparticles: insight into Easy Entry, hard transcytosis of active targeting system in oral administration. Mol Pharm. 2018;15(9):4273–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asad S, Jacobsen A-C, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng. 2022;38:100869.

    Article 

    Google Scholar
     

  • García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev. 2018;124:107–24.

    Article 
    PubMed 

    Google Scholar
     

  • McCright J, Sinha A, Maisel K. Generating an in vitro gut model with physiologically relevant Biophysical mucus Properties. Cell Mol Bioeng. 2022;15(5):479–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araújo F, Martins C, Azevedo C, Sarmento B. Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv Drug Deliv Rev. 2018;124:98–106.

    Article 
    PubMed 

    Google Scholar
     

  • Xie Y, Jin Z, Ma D, Yin TH, Zhao K. Palmitic acid- and cysteine-functionalized nanoparticles overcome mucus and epithelial barrier for oral delivery of drug. Bioeng Transl Med. 2023;8(3):e10510.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guaresti O, Maiz–Fernández S, Palomares T, Alonso–Varona A, Eceiza A, Pérez–Álvarez L, Gabilondo N. Dual charged folate labelled Chitosan nanogels with enhanced mucoadhesion capacity for targeted drug delivery. Eur Polym J. 2020;134:109847.

    Article 
    CAS 

    Google Scholar
     

  • Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol Pharm. 2020;17(1):239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Z, Cui S, Qin L, An Y, Zhang X, Guan J, Wong TW, Mao S. Comparison of virus-capsid mimicking biologic-shell based versus polymeric-shell nanoparticles for enhanced oral insulin delivery. Asian J Pharm Sci. 2023;18(5):100848.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Z, He Z, Liu H, Liu L, Liu Z, Chen Y. Antioxidant enzymes sequestered within lipid-polymer hybrid nanoparticles for the local treatment of inflammatory bowel disease. ACS Appl Mater Interfaces. 2021;13(47):55966–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang JH, Wang S. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efiana NA, Phan TNQ, Wicaksono AJ, Bernkop-Schnürch A. Mucus permeating self-emulsifying drug delivery systems (SEDDS): about the impact of mucolytic enzymes. Colloids Surf B Biointerfaces. 2018;161:228–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Razzaq S, Rauf A, Raza A, Akhtar S, Tabish TA, Sandhu MA, Zaman M, Ibrahim IM, Shahnaz G, Rahdar A, Díez-Pascual AM. A multifunctional polymeric micelle for targeted delivery of Paclitaxel by the inhibition of the P-Glycoprotein transporters. Nanomaterials (Basel). 2021;11(11):2858.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Y, Qiu L. Effective oral delivery of gp100 plasmid vaccine against metastatic melanoma through multi-faceted blending-by-blending nanogels. Nanomedicine. 2019;22:102114.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira de Sousa I, Cattoz B, Wilcox MD, Griffiths PC, Dalgliesh R, Rogers S, Bernkop-Schnürch A. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. Eur J Pharm Biopharm. 2015;97(Pt A):257–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomed (Lond). 2023;18(21):1495–514.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for targeted delivery and therapy in Digestive System. ACS Nano. 2023;17(1):27–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnol. 2022;20(1):362.

    Article 

    Google Scholar
     

  • Amin MK, Boateng JS. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface modification with Sodium Alginate and Polyethylene Glycol for potential oral mucosa vaccine delivery. Mar Drugs. 2022;20(3):156.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao P, Wang J, Sun B, Rewatkar P, Popat A, Fu C, Peng H, Xu ZP, Li L. Enhanced mucosal transport of polysaccharide-calcium phosphate nanocomposites for oral vaccination. ACS Appl Bio Mater. 2021;4(11):7865–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-powered nanobots for overcoming the mucus barrier. ACS Nano. 2024;18:16701–14.

  • Tian Z, Mai Y, Meng T, Ma S, Gou G, Yang J. Nanocrystals for improving oral bioavailability of drugs: intestinal transport mechanisms and influencing factors. AAPS PharmSciTech. 2021;22(5):179.

    Article 
    PubMed 

    Google Scholar
     

  • Yu SH, Tang DW, Hsieh HY, Wu WS, Lin BX, Chuang EY, Sung HW, Mi FL. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomater. 2013;9(7):7449–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How nanoparticles open the Paracellular Route of Biological barriers: mechanisms, applications, and prospects. ACS Nano. 2022;16(10):15627–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabu C, Raghav D, Jijith US, Mufeedha P, Naseef PP, Rathinasamy K, Pramod K. Bioinspired oral insulin delivery system using yeast microcapsules. Mater Sci Eng C Mater Biol Appl. 2019;103:109753.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surwase SS, Shahriar SMS, An JM, Ha J, Mirzaaghasi A, Bagheri B, Park JH, Lee YK, Kim YC. Engineered nanoparticles inside a microparticle oral system for enhanced mucosal and systemic immunity. ACS Appl Mater Interfaces. 2022;14(9):11124–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song JG, Lee SH, Han HK. Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization. J Nanobiotechnol. 2021;19(1):15.

    Article 

    Google Scholar
     

  • He Y, Huang Y, Xu H, Yang X, Liu N, Xu Y, Ma R, Zhai J, Ma Y, Guan S. Aptamer-modified M cell targeting liposomes for oral delivery of macromolecules. Colloids Surf B Biointerfaces. 2023;222:113109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu RG, Fei SY, Zhang XM, Zheng H, Tan MQ. Layer-by-layer oral-deliverable nanoparticles targeted microfold cells to promote lutein absorption in alleviating dry eye disease. Chem Eng J. 2024;479:147590.

    Article 
    CAS 

    Google Scholar
     

  • Ma Y, He H, Xia F, Li Y, Lu Y, Chen D, Qi J, Lu Y, Zhang W, Wu W. In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine. 2017;13(8):2643–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanaya T, Williams IR, Ohno H. Intestinal M cells: tireless samplers of enteric microbiota. Traffic. 2020;21(1):34–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release. 2023;360:149–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durán-Lobato M, Niu Z, Alonso MJ. Oral delivery of Biologics for Precision Medicine. Adv Mater. 2020;32(13):e1901935.

    Article 
    PubMed 

    Google Scholar
     

  • Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2(11):1004–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long P, Zhang Q, Xue M, Cao G, Li C, Chen W, et al. Tomato lectin-modified nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine: targeting intestinal M cells following peroral administration. Biomed Pharmacother. 2019;115:108886.

  • France MM, Turner JR. The mucosal barrier at a glance. J Cell Sci. 2017;130(2):307–14.

  • Ma L, Ma Y, Gao Q, Liu S, Zhu Z, Shi X, Dai F, Reis RL, Kundu SC, Cai K, Xiao B. Mulberry Leaf lipid nanoparticles: a naturally targeted CRISPR/Cas9 oral delivery platform for alleviation of Colon diseases. Small. 2024;20(25):e2307247.

    Article 
    PubMed 

    Google Scholar
     

  • Schoultz I, Keita ÅV. Cellular and molecular therapeutic targets in inflammatory bowel disease-focusing on intestinal barrier function. Cells. 2019;8(2):193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating Redox Balance, Immune responses, and the gut Microbiome. Adv Mater. 2023;35(3):e2207890.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wu Y, Yan Y, Ma Y, Tu L, Shao J, Tang X, Chen L, Liang G, Yin L. Dual-targeted nanoparticle-in-Microparticle System for Ulcerative Colitis Therapy. Adv Healthc Mater. 2023;12(31):e2301518.

    Article 
    PubMed 

    Google Scholar
     

  • Zu M, Ma Y, Zhang J, Sun J, Shahbazi MA, Pan G, Reis RL, Kundu SC, Liu J, Xiao B. An oral nanomedicine elicits in situ Vaccination Effect against Colorectal Cancer. ACS Nano. 2024;18(4):3651–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Huang X, Wang Z, He F, Huang Z, Chen C, Tang B, Qin M, Wu Y, Long C, Tang W, Mo X, Liu J. Analysis of differences in intestinal flora associated with different BMI status in colorectal cancer patients. J Transl Med. 2024;22(1):142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu YJ, Zhao X, Wang LY, Li K, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A gas therapy strategy for intestinal Flora Regulation and Colitis Treatment by Nanogel-based multistage NO delivery microcapsules. Adv Mater. 2024;36(19):e2309972.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SY, Jhun J, Woo JS, Lee KH, Hwang SH, Moon J, Park G, Choi SS, Kim SJ, Jung YJ, Song KY, Cho ML. Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer. Gut Microbes. 2024;16(1):2300846.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yong SB, Park OH, Cho SC. Microbiome-derived lipid nanoparticles for Improved Immunogenicity of mRNA vaccines. ACS Mater Lett. 2024;6(4):1557–63.

    Article 
    CAS 

    Google Scholar
     

  • Huang Y, Xu J, Sun G, Cheng X, An Y, Yao X, et al. Enteric-coated cerium dioxide nanoparticles for effective inflammatory bowel disease treatment by regulating the redox balance and gut microbiome. Biomaterials. 2024;314:122822.

  • Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I. Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group a Streptococcus. Nanomed (Lond). 2016;11(10):1223–36.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Kaminskas LM, Marasini N. Recent advances in nano/microparticle-based oral vaccines. J Pharm Investig. 2021;51(4):425–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren Q, Ma J, Li X, Meng Q, Wu S, Xie Y, Qi Y, Liu S, Chen R. Intestinal toxicity of metal nanoparticles: silver nanoparticles disorder the intestinal Immune Microenvironment. ACS Appl Mater Interfaces. 2023;15(23):27774–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao X, Nguyen TH, Lin M, Mustapha A. Engineered nanoparticles as potential food contaminants and their toxicity to Caco-2 cells. J Food Sci. 2016;81(8):T2107–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology. 2022;16(4):409–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Mao H, Kawazoe N, Chen G. Insight into the interactions between nanoparticles and cells. Biomater Sci-uk. 2017;5(2):173–89.

    Article 
    CAS 

    Google Scholar
     

  • Obinu A, Porcu EP, Piras S, Ibba R, Carta A, Molicotti P, Migheli R, Dalpiaz A, Ferraro L, Rassu G, Gavini E, Giunchedi P. Solid lipid nanoparticles as Formulative Strategy to increase oral permeation of a molecule active in Multidrug-Resistant Tuberculosis Management. Pharmaceutics. 2020;12(12):1132.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Z, Cao X, DeLoid GM, Sampathkumar K, Ng KW, Loo SCJ, Demokritou P. Physicochemical and morphological transformations of Chitosan nanoparticles across the gastrointestinal Tract and Cellular Toxicity in an in vitro model of the small intestinal epithelium. J Agric Food Chem. 2020;68(1):358–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Hu Q, Sun Z, Yu Y, Li X, Tian T, et al. Colon targeting pH-responsive coacervate microdroplets for treatment of ulcerative colitis. Small. 2024;20(33):2311890.

  • Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, et al. Mulberry biomass-derived nanomedicines mitigate colitis through improved inflamed mucosa accumulation and intestinal microenvironment modulation. Research. 2023;6:188.

  • Xu Y, Carradori D, Alhouayek M, Muccioli GG, Cani PD, Préat V, Beloqui A. Size effect on lipid nanocapsule-mediated GLP-1 secretion from Enteroendocrine L cells. Mol Pharm. 2018;15(1):108–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Gou S, Zhu Z, Sun J, Shahbazi MA, Si T, Xu C, Ru J, Shi X, Reis RL, Kundu SC, Ke B, Nie G, Xiao B. Transient mild photothermia improves therapeutic performance of oral nanomedicines with enhanced Accumulation in the Colitis Mucosa. Adv Mater. 2024;36(14):e2309516.

    Article 
    PubMed 

    Google Scholar
     

  • Wei X, Yu S, Zhang T, Liu L, Wang X, Wang X, Chan YS, Wang Y, Meng S, Chen YG. MicroRNA-200 loaded lipid nanoparticles promote intestinal epithelium regeneration in Canonical MicroRNA-Deficient mice. ACS Nano. 2023;17(22):22901–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Wang H, Yang X, Fu Z, Ji X, Shi Y, Zhong J, Hu W, Ye Y, Wang Z, Ni D. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. Sci Adv. 2022;8(37):eabp9882.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials. 2024;307:122530.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang M, Niu X, Yue T. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: a computational model. Colloids Surf B Biointerfaces. 2022;214:112467.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Y, Chen H, Li YX, He K, Yang K, Pang HB. Synergistic entry of individual nanoparticles into mammalian cells driven by Free Energy decline and regulated by their sizes. ACS Nano. 2022;16(4):5885–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther. 2024;9(1):34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaiter T, Cornu R, Millot N, Herbst M, Pellequer Y, Moarbess G, Martin H, Diab-Assaf M, Béduneau A. Size effect and mucus role on the intestinal toxicity of the E551 food additive and engineered silica nanoparticles. Nanotoxicology. 2022;16(2):165–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Ding R, Wang H, Liu L, He J, Tao Y, Zhao Z, Zhang J, Wang A, Sun K, Li Y, Shi Y. Orally administered intelligent self-ablating nanoparticles: a new approach to improve drug cellular uptake and intestinal absorption. Drug Deliv. 2022;29(1):305–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Guo H, Liu L, Liu Y, Xie L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomed. 2019;14:4247–59.

    Article 
    CAS 

    Google Scholar
     

  • Billah MM, Deng H, Dutta P, Liu J. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. Soft Matter. 2023;19(31):5907–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Z, Ye H, Yi X, Li Y. Membrane wrapping efficiency of Elastic nanoparticles during endocytosis: size and shape matter. ACS Nano. 2019;13(1):215–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 2005;102(27):9469–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding HM, Ma YQ. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery. Small. 2015;11(9–10):1055–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa T, Okumura R, Nagano K, Minemura T, Izumi M, Motooka D, Nakamura S, Iida T, Maeda Y, Kumanogoh A, Tsutsumi Y, Takeda K. Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochem Biophys Res Commun. 2021;534:540–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The influence of Nanoparticle properties on oral bioavailability of drugs. Int J Nanomed. 2020;15:6295–310.

    Article 
    CAS 

    Google Scholar
     

  • Gardey E, Cseresnyes Z, Sobotta FH, Eberhardt J, Haziri D, Grunert PC, Kuchenbrod MT, Gruschwitz FV, Hoeppener S, Schumann M, Gaßler N, Figge MT, Stallmach A, Brendel JC. Selective Uptake Into Inflamed Human Intestinal Tissue and Immune Cell Targeting by Wormlike Polymer Micelles. Small. 2024;20(21):e2306482.

  • Yang T, Wang A, Nie D, Fan W, Jiang X, Yu M, Guo S, Zhu C, Wei G, Gan Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat Commun. 2022;13(1):6649.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Integrated System against Radiation-Induced Injury. ACS Nano. 2023;17(11):10560–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong D, Zhang D, Chen W, He J, Ren C, Zhang X, Kong N, Tao W, Zhou M. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci Adv. 2021;7(48):eabi9265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iriarte-Mesa C, Jobst M, Bergen J, Kiss E, Ryoo R, Kim JC, Crudo F, Marko D, Kleitz F, Del Favero G. Morphology-Dependent Interaction of silica nanoparticles with intestinal cells: connecting shape to barrier function. Nano Lett. 2023;23(16):7758–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, Li D, Yu Z, Ren F, Shi X, Li Y. Enhanced transport of shape and rigidity-tuned α-Lactalbumin nanotubes across intestinal mucus and Cellular barriers. Nano Lett. 2020;20(2):1352–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou W, Li B, Min R, Zhang Z, Huang G, Chen Y, Shen B, Zheng Q, Yue P. Mucus-penetrating dendritic mesoporous silica nanoparticle loading drug nanocrystal clusters to enhance permeation and intestinal absorption. Biomater Sci. 2023;11(3):1013–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christfort JF, Guillot AJ, Melero A, Thamdrup LHE, Garrigues TM, Boisen A, Zór K, Nielsen LH. Cubic microcontainers improve in situ colonic mucoadhesion and absorption of Amoxicillin in rats. Pharmaceutics. 2020;12(4):355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang Z, Xu L, Ding R, Wang M, Yang X, Li X, Zhou B, Gou K, Han Y, Liu T, Chen X, Cheng Y, Yang H, Li H. Nanoparticles exhibiting virus-mimic surface topology for enhanced oral delivery. Nat Commun. 2023;14(1):7694.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016;238:176–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Zhuang J, He H, Jiang S, Banerjee A, Lu Y, Wu W, Mitragotri S, Gan L, Qi J. Influence of particle geometry on gastrointestinal transit and absorption following oral administration. ACS Appl Mater Interfaces. 2017;9(49):42492–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Guo J, Wang L, Tang S, Wang AF, Zheng S, Guo Z, Zan X. Transformation of the shape and shrinking the size of acid-resistant metal-organic frameworks (MOFs) for use as the vehicle of oral proteins. Biomater Sci. 2023;11(10):3726–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Janjua TI, Qu Z, Draphoen B, Bai Y, Linden M, Moniruzzaman M, Hasnain SZ, Kumeria T, Popat A. Virus-like silica nanoparticles enhance macromolecule permeation in vivo. Biomater Sci. 2023;11(13):4508–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu N, Becton M, Zhang L, Wang X. Mechanism of coupling nanoparticle stiffness with shape for endocytosis: from Rodlike Penetration to Wormlike Wriggling. J Phys Chem B. 2020;124(49):11145–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Tekobo S, Tu Y, Zhou Q, Jin X, Dergunov SA, Pinkhassik E, Yan B. Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces. 2012;4(8):4099–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Rodríguez A, Vila L, Cortés C, Hernández A, Marcos R. Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Part Fibre Toxicol. 2018;15(1):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Zhang H, Millán Cotto HA, Boyer TL, Warren MR, Wang CM, Luchan J, Dhal PK, Carrier RL, Bajpayee AG. Milk exosomes anchored with hydrophilic and zwitterionic motifs enhance mucus permeability for applications in oral gene delivery. Biomater Sci. 2024;12(3):634–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B. 2008;112(51):16647–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanjula B, Shah FM, Javed A, Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target. 2009;17(3):249–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O’Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev. 2016;106(Pt B):367–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Shen L, Zhang Y, Li H, Wang Y, Quan D. Oil-soluble reversed lipid nanoparticles for oral insulin delivery. J Nanobiotechnol. 2020;18(1):98.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Qiang H, Yang W, Xu Y, Feng T, Cai H, Wang S, Liu Z, Zhang Z, Zhang J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J Control Release. 2022;341:31–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attar ES, Jayakumar S, Devarajan PV. Oral In-Situ nanoplatform with Balanced Hydrophobic-Hydrophilic Property for Transport across Gastrointestinal Mucosa. AAPS PharmSciTech. 2024;25(5):113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Wen L, Zhang F, Lin W, Zhang L. Self-assembly of cyclic grafted copolymers with rigid rings and their potential as drug nanocarriers. J Colloid Interface Sci. 2021;597:114–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Xing L, Chen L, Zhou R, Wu J, Zhu X, Li L, Xiang Y, Wu R, Zhang L, Huang Y. Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier. Biomaterials. 2020;262:120323.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev. 2019;148:252–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efiana NA, Fürst A, Saleh A, Shahzadi I, Bernkop-Schnürch A. Phosphate decorated lipid-based nanocarriers providing a prolonged mucosal residence time. Int J Pharm. 2022;625:122096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-López AL, González-Navarro CJ, Aranaz P, Vizmanos JL, Irache JM. In vivo testing of mucus-permeating nanoparticles for oral insulin delivery using Caenorhabditis elegans as a model under hyperglycemic conditions. Acta Pharm Sin B. 2021;11(4):989–1002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du XJ, Wang JL, Iqbal S, Li HJ, Cao ZT, Wang YC, Du JZ, Wang J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater Sci. 2018;6(3):642–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren T, Wang Q, Xu Y, Cong L, Gou J, Tao X, Zhang Y, He H, Yin T, Zhang H, Zhang Y, Tang X. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J Control Release. 2018;269:423–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei K, Gong F, Wu J, Tang W, Liao F, Han Z, Pei Z, Lei H, Wang L, Shao M, Liu Z, Cheng L. Orally administered Silicon Hydrogen Nanomaterials as Target Therapy to treat Intestinal diseases. ACS Nano. 2023;17(21):21539–52.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Ji W, Peng H, Zhao R, Zhang T, Lu Z, Yang J, Liu R, Zhang X. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Theranostics. 2021;11(9):4452–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoll P, Hörmann N, Nguyen Le NM, Wibel R, Gust R, Bernkop-Schnürch A. Charge converting nanostructured lipid carriers containing a cell-penetrating peptide for enhanced cellular uptake. J Colloid Interface Sci. 2022;628(Pt A):463–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akbari A, Lavasanifar A, Wu J. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomater. 2017;64:249–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan X, Yin N, Liu Z, Sun R, Gou J, Yin T, Zhang Y, He H, Tang X. Hydrophilic and Electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm. 2020;17(9):3177–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu S, Yang Q, Wang R, Tian C, Ji Y, Tan H, Zhao P, Kaplan DL, Wang F, Xia Q. Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomater. 2022;144:81–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tada-Oikawa S, Eguchi M, Yasuda M, Izuoka K, Ikegami A, Vranic S, Boland S, Tran L, Ichihara G, Ichihara S. Functionalized surface-charged SiO2 nanoparticles induce pro-inflammatory responses, but are not Lethal to Caco-2 cells. Chem Res Toxicol. 2020;33(5):1226–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Yi S, Cao Y, Zu M, Li B, Yang W, Shahbazi MA, Wan Y, Reis RL, Kundu SC, Shi X, Xiao B. Dual-driven nanomotors enable tumor penetration and hypoxia alleviation for calcium overload-photo-immunotherapy against colorectal cancer. Biomaterials. 2023;302:122332.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wade J, Salerno F, Kilbride RC, Kim DK, Schmidt JA, Smith JA, LeBlanc LM, Wolpert EH, Adeleke AA, Johnson ER, Nelson J, Mori T, Jelfs KE, Heutz S, Fuchter MJ. Controlling anisotropic properties by manipulating the orientation of chiral small molecules. Nat Chem. 2022;14(12):1383–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang H, Liu R, Wang L, Wang X, Zhang M, Lin S, Cao Z, Wu F, Liu Y, Liu J. Chiral-selective Antigen-Presentation by Supramolecular Chiral Polymer Micelles. Adv Mater. 2023;35(5):e2208157.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Cheng Y, Pan Q, Wu L, Hao X, Bao Z, Li X, Yang M, Luo Q, Li H. Chiral Nanosilica Drug Delivery systems Stereoselectively interacted with the intestinal mucosa to improve the oral adsorption of insoluble drugs. ACS Nano. 2023;17(4):3705–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhao L, Dai Y, Xu M, Zhou R, Zhou B, Gou K, Zeng R, Xu L, Li H. Enantioselective oral absorption of Molecular Chiral Mesoporous silica nanoparticles. Adv Mater. 2023;35(49):e2307900.

    Article 
    PubMed 

    Google Scholar
     

  • Xin W, Wang L, Lin J, Wang Y, Pan Q, Han Y, Bao Z, Zong S, Cheng Y, Chen X, Zhao L, Li H. Mesoporous silica nanoparticles with chiral pattern topological structure function as antiskid tires on the intestinal mucosa to facilitate oral drugs delivery. Asian J Pharm Sci. 2023;18(2):100795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Biotechnology cellular delivery Intestinal Intestinal barrier Molecular Medicine nanoparticle Nanoparticle-cell bidirectional interaction Nanotechnology Orally administered nanocarriers Physicochemical properties response Review th..
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleBest Organic Mattress & Bedding of 2024: Nontoxic, Natural Sleep
    Next Article My kingdom for a Pixel 10 Pro with unlimited Google Photos backups
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    3D-printed carbon nanotube sensors show potential for smart health mon…

    September 27, 2025
    Mobile

    Survey reveals which iPhone is surprisingly the most owned model in th…

    September 26, 2025
    Nanotechnology

    Toxic waste could become the next clean energy breakthrough

    September 26, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202485 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202563 Views

    Cisco Automation Developer Days 2025

    February 10, 202522 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

    September 27, 2025

    Study presents blueprint for hydrogen-powered UAVs

    September 27, 2025

    Your Autonomous Construction Business – Connected World

    September 27, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.