Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

How to Add Auto Captions to Video Using InShot

June 17, 2025

Hydrogen Storage and Thermal Insulation Start-ups Win Asia Liveability…

June 17, 2025

From Innovation to Action: Seizing the $43B Networking Refresh Opportu…

June 17, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»High-fidelity single-spin shuttling in silicon
Nanotechnology

High-fidelity single-spin shuttling in silicon

Editor-In-ChiefBy Editor-In-ChiefJune 9, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
High-fidelity single-spin shuttling in silicon
Share
Facebook Twitter LinkedIn Pinterest Email


  • Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q. et al. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays. Nat. Phys. (2024).

  • Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dijkema, J. et al. Cavity-mediated iSWAP oscillations between distant spins. Nat. Phys. 21, 168–174 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandersypen, L. M. K. & Eriksson, M. A. Quantum computing with semiconductor spins. Phys. Today 72, 38–45 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electronics 2, 151–158 (2019).

    Article 

    Google Scholar
     

  • Lawrie, W. I. L. et al. Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nat. Commun.14, 3617 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Science Advances 8, 5130 (2022).

    Article 

    Google Scholar
     

  • Tanttu, T. et al. Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots. Nat. Phys. (2024).

  • Undseth, B. et al. Hotter is easier: unexpected temperature dependence of spin qubit frequencies. Phys. Rev. X 13, 041015 (2023).

    CAS 

    Google Scholar
     

  • Huang, J. Y. et al. High-fidelity spin qubit operation and algorithmic initialization above 1 K. Nature 627, 772–777 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philips, S. G. J. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electronics 5, 184–190 (2022).

    Article 

    Google Scholar
     

  • Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quant. Inf. 3, 34 (2017).

    Article 

    Google Scholar
     

  • Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, 3960 (2018).

    Article 

    Google Scholar
     

  • Boter, J. M. et al. Spiderweb array: a sparse spin-qubit array. Phys. Rev. Appl. 18, 024053 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jnane, H., Undseth, B., Cai, Z., Benjamin, S. C. & Koczor, B. Multicore quantum computing. Phys. Rev. Appl. 18, 044064 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Künne, M. et al. The SpinBus architecture for scaling spin qubits with electron shuttling. Nat. Commun. 15, 4977 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sterk, J. D. et al. Closed-loop optimization of fast trapped-ion shuttling with sub-quanta excitation. npj Quant. Inf. 8, 68 (2022).

    Article 

    Google Scholar
     

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, A. R. et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat. Commun. 10, 1063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baart, T. A. et al. Single-spin CCD. Nat. Nanotechnol. 11, 330–334 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwerver, A. et al. Shuttling an electron spin through a silicon quantum dot array. PRX Quant. 4, 030303 (2023).

    Article 

    Google Scholar
     

  • Noiri, A. et al. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors. Nat. Commun. 13, 5740 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, T., Baart, T. A., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Coherent shuttle of electron-spin states. npj Quant. Inf. 3, 22 (2017).

    Article 

    Google Scholar
     

  • Flentje, H. et al. Coherent long-distance displacement of individual electron spins. Nat. Commun. 8, 501 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoneda, J. et al. Coherent spin qubit transport in silicon. Nat. Commun. 12, 4114 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, N. D., Henshaw, J. D., Rudolph, M., Luhman, D. R. & Jock, R. M. Dephasing and error dynamics affecting a singlet-triplet qubit during coherent spin shuttling. npj Quant. Inf. 11, 63 (2025).

    Article 

    Google Scholar
     

  • van Riggelen-Doelman, F. et al. Coherent spin qubit shuttling through germanium quantum dots. Nat. Commun. 15, 5716 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C.-A. et al. Operating semiconductor quantum processors with hopping spins. Science 385, 447–452 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McNeil, R. P. G. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

  • Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, R. et al. Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function. Nat. Commun. 15, 2296 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadot, B. et al. Distant spin entanglement via fast and coherent electron shuttling. Nat. Nanotechnol. 16, 570–575 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Struck, T. et al. Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe. Nat. Commun. 15, 1325 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obata, T. et al. Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet. Phys. Rev. B 81, 085317 (2010).

    Article 

    Google Scholar
     

  • Feng, M. et al. Control of dephasing in spin qubits during coherent transport in silicon. Phys. Rev. B 107, 085427 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Krzywda, J. A. & Cywiński, Ł. Interplay of charge noise and coupling to phonons in adiabatic electron transfer between quantum dots. Phys. Rev. B 104, 075439 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Langrock, V. et al. Blueprint of a scalable spin qubit shuttle device for coherent mid-range qubit transfer in disordered Si/SiGe/SiO2. PRX Quant. 4, 020305 (2023).

    Article 

    Google Scholar
     

  • Seidler, I. et al. Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture. npj Quant. Inf. 8, 100 (2022).

    Article 

    Google Scholar
     

  • Mortemousque, P.-A. et al. Enhanced spin coherence while displacing electron in a two-dimensional array of quantum dots. PRX Quant. 2, 030331 (2021).

    Article 

    Google Scholar
     

  • Hansen, N. in Towards a New Evolutionary Computation: Advances in the Estimation of Distribution Algorithms (eds Lozano, J. A. et al.) 75–102 (Springer, 2006).

  • Volmer, M. et al. Mapping of valley splitting by conveyor-mode spin-coherent electron shuttling. npj Quant. Inf. 10, 61 (2024).

    Article 

    Google Scholar
     

  • Neyens, S. et al. Probing single electrons across 300-mm spin qubit wafers. Nature 629, 80–85 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X 8, 021046 (2018).

    CAS 

    Google Scholar
     

  • De Smet, M. et al. Data and analysis underlying high-fidelity single-spin shuttling in silicon. Zenodo (2024).



  • Source link

    general Highfidelity Materials Science Nanotechnology Nanotechnology and Microengineering Quantum information Qubits shuttling silicon singlespin
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleJustice Jackson warns the Supreme Court is manipulating the rules to b…
    Next Article Apple unveils more Intelligence features, smarter Siri still nowhere t…
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    US astronomy facing ‘extinction level’ event following Trump’s 2026 bu…

    June 17, 2025
    Nanotechnology

    Lithium Doping for Better Performance

    June 16, 2025
    Nanotechnology

    Tracking intracellular nanoparticles using multimodal high-resolution …

    June 15, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202469 Views

    Cisco Automation Developer Days 2025

    February 10, 202520 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202515 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    How to Add Auto Captions to Video Using InShot

    June 17, 2025

    Hydrogen Storage and Thermal Insulation Start-ups Win Asia Liveability…

    June 17, 2025

    From Innovation to Action: Seizing the $43B Networking Refresh Opportu…

    June 17, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.