Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

This lesser-known Fire TV Stick feature completely changed how I strea…

December 12, 2025

Benefits, Risks, and Real Market Insights

December 12, 2025

Global connectivity set for ‘great re-alignment’

December 12, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Cell-free immuno-profiling on a genetically programmed biochip
Nanotechnology

Cell-free immuno-profiling on a genetically programmed biochip

Editor-In-ChiefBy Editor-In-ChiefDecember 11, 2025No Comments8 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Cell-free immuno-profiling on a genetically programmed biochip
Share
Facebook Twitter LinkedIn Pinterest Email


  • Yuan, J. et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J. Immunother. Cancer 4, 3 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connors, J. et al. Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity. Hum. Vaccines Immunother. 19, 2267295 (2023).

    Article 

    Google Scholar
     

  • Ogunniyi, A. O. et al. Profiling human antibody responses by integrated single-cell analysis. Vaccine 32, 2866–2873 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stork, E. M. et al. Antigen-specific Fab profiling achieves molecular-resolution analysis of human autoantibody repertoires in rheumatoid arthritis. Nat. Commun. 15, 3114 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, R. M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshaies, R. J. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature 580, 329–338 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, X., D’antona, A. M., Karagiannis, S. & White, A. Recent advances in the molecular design and applications of multispecific biotherapeutics. Antibodies 10, 13 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiner, G. J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15, 361–370 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gérard, A. et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Muruato, A. E. et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat. Commun. 11, 4059 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tickle, S. et al. High-throughput screening for high affinity antibodies. J. Lab. Autom. 14, 303–307 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Schofield, D. J. et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol. 8, R254 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, E. D., Gan, R., Hodgman, C. E. & Jewett, M. C. Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Y. et al. Cell-free protein synthesis system for bioanalysis: advances in methods and applications. Trends Anal. Chem. 161, 117015 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Slomovic, S., Pardee, K. & Collins, J. J. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl Acad. Sci. USA 112, 14429–14435 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C. J. & Baliga, R. Cell-free translation of peptides and proteins:from high throughput screening to clinical production. Curr. Opin. Chem. Biol. 17, 420–426 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramm, F. et al. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci. Rep. 10, 2887 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thoring, L. et al. Cell-free systems based on CHO cell lysates: optimization strategies, synthesis of “difficult-to-express” proteins and future perspectives. PLoS ONE 11, e0163670 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garenne, D., Bowden, S. & Noireaux, V. Cell-free expression and synthesis of viruses and bacteriophages: applications to medicine and nanotechnology. Curr. Opin. Syst. Biol. 28, 100373 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sullivan, C. J. et al. A cell-free expression and purification process for rapid production of protein biologics. Biotechnol. J. 11, 238–248 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silverman, A. D., Akova, U., Alam, K. K., Jewett, M. C. & Lucks, J. B. Design and optimization of a cell-free atrazine biosensor. ACS Synth. Biol. 9, 671–677 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, K. Y. et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synth. Biol. 6, 2293–2301 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hunt, A. C. et al. A rapid cell-free expression and screening platform for antibody discovery. Nat. Commun. 14, 3897 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojima-Kato, T., Nagai, S. & Nakano, H. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation. Sci. Rep. 7, 13979 (2017).

  • Stech, M. & Kubick, S. Cell-free synthesis meets antibody production: a review. Antibodies 4, 12–33 (2015).

    Article 

    Google Scholar
     

  • Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerber, D., Maerkl, S. J. & Quake, S. R. An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 6, 71–74 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackburn, M. C., Petrova, E., Correia, B. E. & Maerkl, S. J. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering. Nucleic Acids Res. 44, e68 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markin, C. J. et al. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norouzi, M. et al. Cell-free dot blot: an ultra-low-cost and practical immunoassay platform for detection of anti-SARS-CoV-2 antibodies in human and animal sera. Microbiol. Spectr. 11, e0245722 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hufnagel, K. et al. In situ, cell-free protein expression on microarrays and their use for the detection of immune responses. Bio-protocol 9, e3152 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goshima, N. et al. Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat. Methods 5, 1011–1017 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morishita, R. et al. CF-PA2Vtech: a cell-free human protein array technology for antibody validation against human proteins. Sci. Rep. 9, 19349 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy, M., Falkovich, R., Daube, S. S. & Bar-Ziv, R. H. Autonomous synthesis and assembly of a ribosomal subunit on a chip. Sci. Adv. 6, eaaz6020 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vonshak, O. et al. Programming multi-protein assembly by gene-brush patterns and two-dimensional compartment geometry. Nat. Nanotechnol. 15, 783–791 (2020).

  • Buxboim, A. et al. A single-step photolithographic interface for cell-free gene expression and active biochips. Small 3, 500–510 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bracha, D. et al. Entropy-driven collective interactions in DNA brushes on a biochip. Proc. Natl Acad. Sci. USA 110, 4534–4538 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Förste, S. et al. Computational analysis of protein synthesis, diffusion, and binding in compartmental biochips. Microb. Cell Fact. 22, 244 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buxboim, A., Daube, S. S. & Bar-Ziv, R. Synthetic gene brushes: a structure–function relationship. Mol. Syst. Biol. 4, 181 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caschera, F. & Noireaux, V. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription–translation system. Biochimie 99, 162–168 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S., Garcia-D’Angeli, A., Brennan, J. P. & Huo, Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst 139, 439–445 (2013).

    Article 

    Google Scholar
     

  • Seydoux, E. et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunity 53, 98–105.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 3, 1071–1079 (2006).


    Google Scholar
     

  • Gong, Y., Qin, S. & Dai, L. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct. Target. Ther. 6, 396 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telenti, A., Hodcroft, E. B. & Robertson, D. L. The evolution and biology of SARS-CoV-2 variants. Cold Spring Harb. Perspect. Med. 12, a041390 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, M. et al. Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape. Immunity 55, 1501–1514 (2022).

  • Lee, C. H. et al. Potential CD8+ T cell cross-reactivity against SARS-CoV-2 conferred by other coronavirus strains. Front. Immunol. 11, 579480 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W., Cheng, Y., Zhou, H., Sun, C. & Zhang, S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol. J. 20, 6 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Movsisyan, M. et al. Tracking the evolution of anti-SARS-CoV-2 antibodies and long-term humoral immunity within 2 years after COVID-19 infection. Sci. Rep. 14, 13417 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kightlinger, W. et al. A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat. Commun. 10, 5404 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marani, M., Katul, G. G., Pan, W. K. & Parolari, A. J. Intensity and frequency of extreme novel epidemics. Proc. Natl Acad. Sci. USA 118, e2105482118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurlburt, N. K. et al. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nat. Commun. 11, 5413 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buxboim, A., Daube, S. S. & Bar-Ziv, R. Ultradense synthetic gene brushes on a chip. Nano Lett. 9, 909–913 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garamella, J., Marshall, R., Rustad, M. & Noireaux, V. The all E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol. 5, 344–355 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, B. et al. Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr. Purif. 9, 142–151 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, T., Laird, J. R., Prescher, J. A. & Thorpe, C. Gaussia princeps luciferase: a bioluminescent substrate for oxidative protein folding. Protein Sci. 27, 1509–1517 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupin, A. Cell-free immuno-profiling on a genetically programmed biochip. Zenodo (2025).



  • Source link

    biochip Biological physics Cellfree Characterization and analytical techniques general genetically immunoprofiling Materials Science Nanofabrication and nanopatterning Nanotechnology Nanotechnology and Microengineering programmed
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Year in AI with Ksenia Se – O’Reilly
    Next Article Disney hits Google with cease-and-desist claiming ‘massive’ copyright …
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    KATRIN and MicroBooNE come up empty handed – Physics World

    December 10, 2025
    Nanotechnology

    Achieving the Impossible: Researchers Magnetize Quantum Dots with Mang…

    December 9, 2025
    Nanotechnology

    The “impossible” LED breakthrough that changes everything

    December 8, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 2024108 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202577 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202533 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    This lesser-known Fire TV Stick feature completely changed how I strea…

    December 12, 2025

    Benefits, Risks, and Real Market Insights

    December 12, 2025

    Global connectivity set for ‘great re-alignment’

    December 12, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.