Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

This company could beat Apple and Qualcomm to the year’s most powerful…

May 20, 2025

GRI’s North American lead Matthew Rusk steps aside

May 20, 2025

Mitigating Risk in Construction – Connected World

May 20, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Breakthrough in 2D material growth opens doors to cleaner energy and n…
Nanotechnology

Breakthrough in 2D material growth opens doors to cleaner energy and n…

Editor-In-ChiefBy Editor-In-ChiefJanuary 9, 2025No Comments3 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Breakthrough in 2D material growth opens doors to cleaner energy and n…
Share
Facebook Twitter LinkedIn Pinterest Email


A breakthrough in decoding the growth process of Hexagonal Boron Nitride (hBN), a 2D material, and its nanostructures on metal substrates could pave the way for more efficient electronics, cleaner energy solutions and greener chemical manufacturing, according to new research from the University of Surrey.

Only one atom thick, hBN — often nicknamed “white graphene” — is an ultra-thin, super-resilient material that blocks electrical currents, withstands extreme temperatures and resists chemical damage. Its unique versatility makes it an invaluable component in advanced electronics, where it can protect delicate microchips and enable the development of faster, more efficient transistors.

Going a step further, researchers have also demonstrated the formation of nanoporous hBN, a novel material with structured voids that allows for selective absorption, advanced catalysis and enhanced functionality, vastly expanding its potential environmental applications. This includes sensing and filtering pollutants — as well as enhancing advanced energy systems, including hydrogen storage and electrochemical catalysts for fuel cells.

Dr Marco Sacchi, lead author of the study and Associate Professor at Surrey’s School of Chemistry and Chemical Engineering, said:

“Our research sheds light on the atomic-scale processes that govern the formation of this remarkable material and its nanostructures. By understanding these mechanisms, we can engineer materials with unprecedented precision, optimising their properties for a host of revolutionary technologies.”

Working in collaboration with Austria’s Graz University of Technology (TU Graz), the team — led by Dr Marco Sacchi, with the theoretical work performed by Dr Anthony Payne and Dr Neubi Xavier — combined density functional theory and microkinetic modelling to map the growth process of hBN from borazine precursors, examining key molecular processes such as diffusion, decomposition, adsorption and desorption, polymerisation, and dehydrogenation. This approach enabled them to develop an atomic scale model that allows for the material to be grown at any temperature.

The insights from the theoretical simulations align closely with experimental observations by the Graz research group, setting the stage for controlled, high-quality production of hBN with specific designs and functionality.

Dr Anton Tamtögl, lead researcher on the project at TU Graz, said:

“Previous studies have neither considered all these intermediates nor such a large parameter space (temperature and particle density). We believe that it will be useful to guide chemical vapour deposition growth of hBN on other metallic substrates, as well as the synthesis of nanoporous or functionalised structures.”

The study has been published in Small, with the research supported by the UK’s HPC Materials Chemistry Consortium and the Austrian Science Fund.



Source link

Breakthrough cleaner doors Energy Growth Material Materials Science; Inorganic Chemistry; Chemistry; Energy and Resources; Nanotechnology; Graphene; Engineering; Physics n.. Opens
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleHow Narvar is using AI and data to enhance post-purchase customer expe…
Next Article Charge 6 Things at Once and Save 31% With This Anker Prime Charger Dea…
Editor-In-Chief
  • Website

Related Posts

Nanotechnology

Quantum Semiconductor Nanoclusters for Sustainable Hydrogen

May 20, 2025
Branding

Branding Is More Than Communication

May 20, 2025
Nanotechnology

Novel nanoreactor combines antibiotic detection and degradation in a s…

May 19, 2025
Add A Comment
Leave A Reply Cancel Reply

Top Posts

100+ TikTok Statistics Updated for December 2024

December 4, 202463 Views

Cisco Automation Developer Days 2025

February 10, 202516 Views

BenQ PD2730S Review – MacRumors

February 14, 202512 Views
Stay In Touch
  • Facebook
  • YouTube
  • TikTok
  • WhatsApp
  • Twitter
  • Instagram
Latest Reviews

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
About Us

Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

Our Picks

This company could beat Apple and Qualcomm to the year’s most powerful…

May 20, 2025

GRI’s North American lead Matthew Rusk steps aside

May 20, 2025

Mitigating Risk in Construction – Connected World

May 20, 2025

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

Type above and press Enter to search. Press Esc to cancel.