Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).
Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Modern Phys. 90, 031002 (2018).
Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 9, 326–331 (2015).
Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).
Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).
Faust, W. L. & Henry, C. H. Mixing of visible and near-resonance infrared light in gap. Phys. Rev. Lett. 17, 1265–1268 (1966).
Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: physics and applications. J. Phys. D 45, 113001 (2012).
Camley, R. E. & Mills, D. L. Surface polaritons on uniaxial antiferromagnets. Phys. Rev. B 26, 1280–1287 (1982).
Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).
Dittrich, T. et al. Quantum Transport and Dissipation vol. 3 (Wiley, 1998).
Xu, J. et al. Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020).
Guo, X., Zou, C.-L., Jung, H. & Tang, H. X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016).
Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008).
Li, M. et al. Experimental observation of topological z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).
Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).
He, L., Wu, J., Jin, J., Mele, E. J. & Zhen, B. Polaritonic Chern insulators in monolayer semiconductors. Phys. Rev. Lett. 130, 043801 (2023).
Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).
Fang, K. & Wang, Y. Anomalous quantum Hall effect of light in Bloch-wave modulated photonic crystals. Phys. Rev. Lett. 122, 233904 (2019).
Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).
Lu, J., He, L., Addison, Z., Mele, E. J. & Zhen, B. Floquet topological phases in one-dimensional nonlinear photonic crystals. Phys. Rev. Lett. 126, 113901 (2021).
Zhu, W., Xue, H., Gong, J., Chong, Y. & Zhang, B. Time-periodic corner states from Floquet higher-order topology. Nat. Commun. 13, 11 (2022).
Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).
McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).
Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).
Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature (2023).
Winn, J. N., Fan, S., Joannopoulos, J. D. & Ippen, E. P. Interband transitions in photonic crystals. Phys. Rev. B 59, 1551–1554 (1999).
He, L. et al. Floquet Chern insulators of light. Nat. Commun. 10, 4194 (2019).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015 (1988).
Jin, J., He, L., Lu, J., Mele, E. J. & Zhen, B. Floquet quadrupole photonic crystals protected by space-time symmetry. Phys. Rev. Lett. 129, 063902 (2022).
Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quant. Electron. 40, 1511–1518 (2004).
Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).
Peng, B., Özdemir, Ş. K., Chen, W., Nori, F. & Yang, L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014).
Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).
Berman, P. R. Cavity Quantum Electrodynamics (Academic Press, 1994).
Thiel, L. et al. Wafer-scale fabrication of ingap-on-insulator for nonlinear and quantum photonic applications. Appl. Phys. Lett. 125, 131102 (2024).
Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).
Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).
Wang, C. et al. Realization of fractional quantum Hall state with interacting photons. Science 384, 579–584 (2024).
Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).
Chang, L. et al. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4, 036103 (2019).
Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).
Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Optics Photonics 13, 242–352 (2021).
Sanz-Arranz, A., Manrique-Martinez, J. A., Medina-Garcia, J. & Rull-Perez, F. Amorphous zinc borate as a simple standard for baseline correction in Raman spectra: amorphous zinc borate as Raman standard. J. Raman Spectrosc. 48, 1644–1653 (2017).
Massie, C., Chen, K. & Berger, A. J. Calibration technique for suppressing residual etalon artifacts in slit-averaged Raman spectroscopy. Appl. Spectrosc. 76, 255–261 (2022).