Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

This Phone Will Auto Shut Display If Someone Peeking Your Phone Displa…

October 15, 2025

Mark Carney could make it easier for us to buy EVs if he wanted. Right…

October 15, 2025

The Sky’s No Longer the Limit

October 15, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»On-chip direct synthesis of boron nitride memristors
Nanotechnology

On-chip direct synthesis of boron nitride memristors

Editor-In-ChiefBy Editor-In-ChiefJuly 31, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
On-chip direct synthesis of boron nitride memristors
Share
Facebook Twitter LinkedIn Pinterest Email


  • Romero, F. J. et al. Resistive switching in graphene oxide. Front. Mater. 7, 1–5 (2020).


    Google Scholar
     

  • Moazzeni, A., Riyahi Madvar, H., Hamedi, S. & Kordrostami, Z. Fabrication of graphene oxide-based resistive switching memory by the spray pyrolysis technique for neuromorphic computing. ACS Appl. Nano Mater. 6, 2236–2248 (2023).

    CAS 

    Google Scholar
     

  • Ahmed, T. et al. Mixed ionic-electronic charge transport in layered black-phosphorus for low-power memory. Adv. Funct. Mater. 32, 2202923 (2022).


    Google Scholar
     

  • Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. S. et al. Dual-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2001339 (2020).

  • Wu, Q. T. et al. Two-dimensional hexagonal boron nitride based memristor. Acta Phys. Sin. 66, 228504 (2017).

  • Zhu, K. et al. Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl. Mater. Interfaces 11, 37999–38005 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).


    Google Scholar
     

  • Xie, J., Afshari, S. & Sanchez Esqueda, I. Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware. npj 2D Mater. Appl. 6, 71 (2022).

  • Wu, X. et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31, 1900175 (2019).


    Google Scholar
     

  • Zhao, H. et al. Atomically thin femtojoule memristive device. Adv. Mater. 29, 1703232 (2017).


    Google Scholar
     

  • Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    CAS 

    Google Scholar
     

  • Teja Nibhanupudi, S. S. et al. Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 15, 2334 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afshari, S. et al. Dot-product computation and logistic regression with 2D hexagonal-boron nitride (h-BN) memristor arrays. 2D Mater. 10, 35031 (2023).

    CAS 

    Google Scholar
     

  • Xie, J. et al. Quantum conductance in vertical hexagonal boron nitride memristors with graphene-edge contacts. Nano Lett. 24, 2473–2480 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors. Nanoscale 15, 4309–4316 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wen, C. et al. Advanced data encryption using 2D materials. Adv. Mater. 33, 2100187 (2021).


    Google Scholar
     

  • Shen, Y. et al. Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33, e2103656 (2021).

    PubMed 

    Google Scholar
     

  • Lanza, M. et al. Back-end-of-line integration of 2D materials on silicon microchips. In Proc. International Electron Devices Meeting 7–10 (IEEE, 2023).

  • Merenkov, I. S. et al. Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets. Nano Res. 12, 91–99 (2019).

    CAS 

    Google Scholar
     

  • Hoang, D. Q. et al. Growth mechanisms of hBN crystalline nanostructures with RF sputtering deposition: challenges, opportunities, and future perspectives. Phys. Scr. 98, 085003 (2023).

  • Hoang, D. Q. et al. Elucidation of the growth mechanism of sputtered 2D hexagonal boron nitride nanowalls. Cryst. Growth Des. 16, 3699–3708 (2016).

    CAS 

    Google Scholar
     

  • Yu, J. et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 4, 414–422 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Andújar, J. L., Bertran, E. & Maniette, Y. Microstructure of highly oriented, hexagonal, boron nitride thin films grown on crystalline silicon by radio frequency plasma-assisted chemical vapor deposition. J. Appl. Phys. 80, 6553–6555 (1996).


    Google Scholar
     

  • Toth, P. Nanostructure quantification of turbostratic carbon by HRTEM image analysis: state of the art, biases, sensitivity and best practices. Carbon 178, 688–707 (2021).

    CAS 

    Google Scholar
     

  • Yamamoto, M. et al. Low-temperature direct synthesis of multilayered h-BN without catalysts by inductively coupled plasma-enhanced chemical vapor deposition. ACS Omega 8, 5497–5505 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat. Commun. 10, 5140 (2019).


    Google Scholar
     

  • Yuan, Y. et al. On the quality of commercial chemical vapour deposited hexagonal boron nitride. Nat. Commun. 15, 2651 (2024).


    Google Scholar
     

  • Lee, S. H. et al. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Sci. Rep. 9, 14420 (2019).


    Google Scholar
     

  • Radhakrishnan, S. et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 3, e1700842 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S. J. et al. Volatile and nonvolatile resistive switching coexistence in conductive point hexagonal boron nitride monolayer. ACS Nano 17, 13457–13466 (2023).


    Google Scholar
     

  • Lim, E. W. & Ismail, R. Conduction mechanism of valence change resistive switching memory: a survey. Electron 4, 586–613 (2015).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Resistive switching properties of monolayer h-BN atomristors with different electrodes. Appl. Phys. Lett. 120, 183504 (2022).

  • Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1703703 (2017).

  • Cai, Z., Liu, L. & Zhou, P. The development of transfer technologies for advanced 2D circuits integration. InfoMat 6, 304–322 (2024).

  • Nakatani, M. et al. Ready-to-transfer two-dimensional materials using tunable adhesive force tapes. Nat. Electron. 7, 119–130 (2024).


    Google Scholar
     

  • Pham, P. V. et al. Transfer of 2D films: from imperfection to perfection. ACS Nano 18, 14841–14876 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupina, G. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5191 (2021).


    Google Scholar
     

  • Haensch, W. et al. Compute in-memory with non-volatile elements for neural networks: a review from a co-design perspective. Adv. Mater. 35, e2204944 (2023).

    PubMed 

    Google Scholar
     

  • Song, W. et al. Programming memristor arrays with arbitrarily high precision for analog computing. Science 383, 903–910 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, H., Mastro, M. A., Tadjer, M. J. & Kim, J. Programmable multilevel memtransistors based on van der Waals heterostructures. Adv. Electron. Mater. 5, 1800720 (2019).


    Google Scholar
     

  • Khot, A. C. et al. Amorphous boron nitride memristive device for high-density memory and neuromorphic computing applications. ACS Appl. Mater. Interfaces 14, 10546–10557 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).

    CAS 

    Google Scholar
     

  • Kim, H., Kim, T., Kim, J. & Kim, J. J. Neural network optimized to resistive memory with nonlinear current-voltage characteristics. ACM J. Emerg. Technol. Comput. Syst. 14, 46 (2018).


    Google Scholar
     

  • Jiang, Z. et al. COPS: an efficient and reliability-enhanced programming scheme for analog RRAM and on-chip implementation of denoising diffusion probabilistic model. In Proc. 60th ACM/IEEE Design Automation Conference 8–11 (ACM, 2023).

  • Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ambrogio, S. et al. Statistical fluctuations in HfOx resistive-switching memory: part II—random telegraph noise. IEEE Trans. Electron Devices 61, 2920–2927 (2014).

    CAS 

    Google Scholar
     

  • Puglisi, F. M. in Noise in Nanoscale Semiconductor Devices (ed. Grasser, T.) 87–133 (Springer, 2020).

  • Becker, T. et al. Resistive switching devices producing giant random telegraph noise. IEEE Electron Device Lett. 43, 146–149 (2022).

    CAS 

    Google Scholar
     

  • Pazos, S. et al. Hardware implementation of a true random number generator integrating a hexagonal boron nitride memristor with a commercial microcontroller. Nanoscale 15, 2171–2180 (2022).


    Google Scholar
     

  • Maestro, M. et al. New high resolution random telegraph noise (RTN) characterization method for resistive RAM. Solid. State Electron. 115, 140–145 (2016).

    CAS 

    Google Scholar
     

  • Martin-Martinez, J., Diaz, J., Rodriguez, R., Nafria, M. & Aymerich, X. New weighted time lag method for the analysis of random telegraph signals. IEEE Electron Device Lett. 35, 479–481 (2014).


    Google Scholar
     

  • Pazos, S. et al. High-temporal-resolution characterization reveals outstanding random telegraph noise and the origin of dielectric breakdown in h-BN memristors. Adv. Funct. Mater. 2213816, 2213816 (2023).


    Google Scholar
     

  • Huang, Y. C. et al. 15.7 A 32Mb RRAM in a 12nm FinFET technology with a 0.0249 μm2 bit-cell, a 3.2 GB/s read throughput, a 10K cycle write endurance and a 10-year retention at 105 °C. In Proc. IEEE International Solid-State Circuits Conference 288–290 (IEEE, 2024).

  • Krishnan, G. et al. Robust RRAM-based in-memory computing in light of model stability. In Proc. IEEE International Reliability Physics Symposium 1–5 (IEEE, 2021).



  • Source link

    boron direct Electronic devices general Materials Science memristors Nanotechnology Nanotechnology and Microengineering nitride Onchip Synthesis
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleHanoi Turned Upside Down – O’Reilly
    Next Article Android Developers Blog: Android Studio Narwhal Feature Drop is stable
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Machine learning helps identify ‘thermal switch’ for next-generation n…

    October 15, 2025
    Nanotechnology

    Scientists grow metal instead of 3D printing it — and it’s 20x stronge…

    October 14, 2025
    Advertising

    The One Show Launches Indies Discipline to Spotlight Independent Agenc…

    October 14, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202487 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202566 Views

    Cisco Automation Developer Days 2025

    February 10, 202522 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    This Phone Will Auto Shut Display If Someone Peeking Your Phone Displa…

    October 15, 2025

    Mark Carney could make it easier for us to buy EVs if he wanted. Right…

    October 15, 2025

    The Sky’s No Longer the Limit

    October 15, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.