Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

September 27, 2025

Study presents blueprint for hydrogen-powered UAVs

September 27, 2025

Your Autonomous Construction Business – Connected World

September 27, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Observation of chiral emission enabled by collective guided resonances
Nanotechnology

Observation of chiral emission enabled by collective guided resonances

Editor-In-ChiefBy Editor-In-ChiefJuly 6, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Observation of chiral emission enabled by collective guided resonances
Share
Facebook Twitter LinkedIn Pinterest Email


  • Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Article 

    Google Scholar
     

  • Yan, J., Yuan, Z. & Gao, S. End and central plasmon resonances in linear atomic chains. Phys. Rev. Lett. 98, 216602 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Giannini, V., Vecchi, G. & Gómez Rivas, J. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macha, P. et al. Implementation of a quantum metamaterial using superconducting qubits. Nat. Commun. 5, 5146 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972).

    Article 
    PubMed 

    Google Scholar
     

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article 

    Google Scholar
     

  • Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article 

    Google Scholar
     

  • Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    Article 

    Google Scholar
     

  • Perrin, M., Lippi, G. & Politi, A. Optical gratings in the collective interaction between radiation and atoms, including recoil and collisions. J. Mod. Opt. 49, 419–429 (2002).

    Article 

    Google Scholar
     

  • Yu, D., Lupton, E. M., Liu, M., Liu, W. & Liu, F. Collective magnetic behavior of graphene nanohole superlattices. Nano Res. 1, 56–62 (2008).

    Article 

    Google Scholar
     

  • Tserkezis, C., Gantzounis, G. & Stefanou, N. Collective plasmonic modes in ordered assemblies of metallic nanoshells. J. Phys. Condens. Matter 20, 075232 (2008).

    Article 

    Google Scholar
     

  • Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article 

    Google Scholar
     

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article 

    Google Scholar
     

  • Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257 (2015).

    Article 

    Google Scholar
     

  • Xie, Z. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 7, 18001 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Integrated optical vortex microcomb. Nat. Photon. 18, 625–631 (2024).

    Article 

    Google Scholar
     

  • Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    Article 

    Google Scholar
     

  • Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mohamed, S. et al. Controlling topology and polarization state of lasing photonic bound states in continuum. Laser Photon. Rev. 16, 2100574 (2022).

    Article 

    Google Scholar
     

  • Hwang, M.-S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2023).

    Article 

    Google Scholar
     

  • Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Ultrafast control of fractional orbital angular momentum of microlaser emissions. Light Sci. Appl. 9, 179 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).

    Article 

    Google Scholar
     

  • Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    Article 

    Google Scholar
     

  • Sun, W. et al. Lead halide perovskite vortex microlasers. Nat. Commun. 11, 4862 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull. 67, 359–366 (2022).

    Article 

    Google Scholar
     

  • Notomi, M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000).

    Article 

    Google Scholar
     

  • Notomi, M. Negative refraction in photonic crystals. Opt. Quantum Electron. 34, 133–143 (2002).

    Article 

    Google Scholar
     

  • Liang, Y., Peng, C., Sakai, K., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach. Phys. Rev. B 84, 195119 (2011).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Analytical theory of finite-size photonic crystal slabs near the band edge. Opt. Express 30, 14033–14047 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ren, Y. et al. Low-threshold nanolasers based on miniaturized bound states in the continuum. Sci. Adv. 8, eade8817 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiersig, J., Kim, S. W. & Hentschel, M. Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78, 053809 (2008).

    Article 

    Google Scholar
     

  • Wiersig, J. et al. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011).

    Article 

    Google Scholar
     

  • Wiersig, J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011).

    Article 

    Google Scholar
     

  • Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, T. X., Leykam, D. & Kivshar, Y. Photonic flatband resonances in multiple light scattering. Phys. Rev. Lett. 132, 043803 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, T. X. et al. Collective nature of high-Q resonances in finite-size photonic metastructures. Phys. Rev. Res. 7, 013316 (2025).

    Article 

    Google Scholar
     

  • Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Article 

    Google Scholar
     

  • Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Article 

    Google Scholar
     

  • Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 618, 727–732 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Chiral collective emission enabled general guided Materials Science Nanotechnology Nanotechnology and Microengineering observation Photonic crystals resonances Semiconductor lasers
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Download: India’s AI independence, and predicting future epidemics
    Next Article I prefer Signal but use WhatsApp for this simple reason
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    3D-printed carbon nanotube sensors show potential for smart health mon…

    September 27, 2025
    Nanotechnology

    Toxic waste could become the next clean energy breakthrough

    September 26, 2025
    Nanotechnology

    Quadruple synergistic amplification of ferroptosis for precision gliob…

    September 25, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202485 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202563 Views

    Cisco Automation Developer Days 2025

    February 10, 202522 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Bring Your D&D Miniatures to Life With This $160 Anycubic 3D Printer

    September 27, 2025

    Study presents blueprint for hydrogen-powered UAVs

    September 27, 2025

    Your Autonomous Construction Business – Connected World

    September 27, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.