Close Menu
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop

Subscribe to Updates

Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

Please enable JavaScript in your browser to complete this form.
Loading
What's Hot

Co-op game Overcooked may become a competition reality TV show on Netf…

November 5, 2025

7 Proven Ways to Boost Your Environmental Impact

November 5, 2025

Beyond Survival: New York’s Game-Changing Investment in Safety Net Hos…

November 5, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram Pinterest Vimeo
The LinkxThe Linkx
  • Home
  • Technology
    • Gadgets
    • IoT
    • Mobile
    • Nanotechnology
    • Green Technology
  • Trending
  • Advertising
  • Social Media
    • Branding
    • Email Marketing
    • Video Marketing
  • Shop
The LinkxThe Linkx
Home»Nanotechnology»Recent advances in theranostic nanomaterials for overcoming traumatic …
Nanotechnology

Recent advances in theranostic nanomaterials for overcoming traumatic …

Editor-In-ChiefBy Editor-In-ChiefOctober 30, 2025No Comments19 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
Recent advances in theranostic nanomaterials for overcoming traumatic …
Share
Facebook Twitter LinkedIn Pinterest Email


  • Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13:528.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019;266:2878–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal. 2022;20:56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdul-Muneer P, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 2015;51:966–79.

    Article 
    CAS 

    Google Scholar
     

  • Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, et al. Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res. 2010;88:3530–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, et al. Traumatic brain injuries. Nat Rev Dis Primers. 2016;2:1–19.

    Article 

    Google Scholar
     

  • Maas AI, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21:1004–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: structure, regulation and drug delivery. Signal Transduct Target Ther. 2023;8:217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Zhao Y, Liang X-J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res. 2011;44:1114–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, Kim J, An JM, Park C-K, Kim D. All-nontoxic fluorescent probe for biothiols and its clinical applications for real-time glioblastoma visualization. ACS Sens. 2023;8:1723–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Um H, Kim NH, Kim D. Potential Alzheimer’s disease therapeutic nano-platform: discovery of amyloid-beta plaque disaggregating agent and brain-targeted delivery system using porous silicon nanoparticles. Bioact Mater. 2023;24:497–506.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang RH, Jang J-E, Huh E, Kang SJ, Ahn D-R, Kang JS, et al. A brain tumor-homing tetra-peptide delivers a nano-therapeutic for more effective treatment of a mouse model of glioblastoma. Nanoscale Horiz. 2020;5:1213–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brahmi M, Bakirhan NK. Innovations in traumatic brain injury diagnostics: electrochemical impedance spectroscopy leading the way. J Appl Electrochem. 2024;55:1–17.

    Article 

    Google Scholar
     

  • Dhull A, Zhang Z, Sharma R, Dar AI, Rani A, Wei J, Gopalakrishnan S, Ghannam A, Hahn V, Pulukuri AJ, et al. Discovery of 2-deoxy glucose surfaced mixed layer dendrimer: a smart neuron targeted systemic drug delivery system for brain diseases. Theranostics. 2024;14:3221–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHugh EA, Liopo AV, Mendoza K, Robertson CS, Wu G, Wang Z, Chen W, Beckham JL, Derry PJ, Kent TA, Tour JM. Oxidized activated charcoal nanozymes: synthesis, and optimization for in vitro and in vivo bioactivity for traumatic brain injury. Adv Mater. 2024;36:e2211239.

    Article 
    PubMed 

    Google Scholar
     

  • Robbins EM, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Improving sensitivity and longevity of in vivo glutamate sensors with electrodeposited nanopt. ACS Appl Mater Interfaces. 2024;16:40570–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubby MF, Fonder C, Uchayash S, Liang X, Sakaguchi DS, Que L. Assessment of the behaviors of an in vitro brain model on-chip under shockwave impacts. ACS Appl Mater Interfaces. 2024;16:33246–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, An JM, Kim J, Chowdhury T, Yu HJ, Kim K-M, Kang H, Park C-K, Joung JF, Park S. Pyridine-NBD: A homocysteine-selective fluorescent probe for glioblastoma (GBM) diagnosis based on a blood test. Anal Chim Acta. 2022;1202:339678.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singha S, Kim D, Rao AS, Wang T, Kim KH, Lee K-H, et al. Two-photon probes based on arylsulfonyl azides: fluorescence detection and imaging of biothiols. Dyes Pigments. 2013;99:308–15.

    Article 
    CAS 

    Google Scholar
     

  • Zuidema JM, Kumeria T, Kim D, Kang J, Wang J, Hollett G, Zhang X, Roberts DS, Chan N, Dowling C. Oriented nanofibrous polymer scaffolds containing protein-loaded porous silicon generated by spray nebulization. Adv Mater. 2018;30:1706785.

    Article 

    Google Scholar
     

  • Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan B, Anderson DB, Chen L, Feng S, Zhou H. Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: a systematic analysis for the global burden of disease study 2019. BMJ Open. 2023;13:e075049.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:56–87.

    Article 

    Google Scholar
     

  • Stein MB, Kessler RC, Heeringa SG, Jain S, Campbell-Sills L, Colpe LJ, et al. Prospective longitudinal evaluation of the effect of deployment-acquired traumatic brain injury on posttraumatic stress and related disorders: results from the army study to assess risk and resilience in servicemembers (Army STARRS). Am J Psychiatry. 2015;172:1101–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson BD. Sports-related subconcussive head trauma. Concussions Athletics: Brain Behav. 2021;249–69.

  • Bruns J Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44:2–10.

    Article 
    PubMed 

    Google Scholar
     

  • Fernandes FAO. Biomechanical analysis of helmeted head impacts: novel materials and geometries. Universidade de Aveiro (Portugal); 2019.

  • Johnson WD, Griswold DP. Traumatic brain injury: a global challenge. Lancet Neurol. 2017;16:949–50.

    Article 
    PubMed 

    Google Scholar
     

  • Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9:231–6.

    Article 
    PubMed 

    Google Scholar
     

  • Harvey LA, Close JC. Traumatic brain injury in older adults: characteristics, causes and consequences. Injury. 2012;43:1821–6.

    Article 
    PubMed 

    Google Scholar
     

  • Thompson HJ, McCormick WC, Kagan SH. Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc. 2006;54:1590–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic brain injury-induced cerebral microbleeds in the elderly. Geroscience. 2021;43:125–36.

    Article 
    PubMed 

    Google Scholar
     

  • Reger MA, Brenner LA, du Pont A. Traumatic brain injury and veteran mortality after the war in Afghanistan. JAMA Netw Open. 2022;5:e2148158-2148158.

    Article 

    Google Scholar
     

  • Stein DG, Geddes RI, Sribnick EA. Recent developments in clinical trials for the treatment of traumatic brain injury. Handb Clin Neurol. 2015;127:433–51.

    Article 
    PubMed 

    Google Scholar
     

  • DePalma RG, Hoffman SW. Combat blast related traumatic brain injury (TBI): decade of recognition; promise of progress. Behav Brain Res. 2018;340:102–5.

    Article 
    PubMed 

    Google Scholar
     

  • Duckworth JL, Grimes J, Ling GS. Pathophysiology of battlefield associated traumatic brain injury. Pathophysiology. 2013;20:23–30.

    Article 
    PubMed 

    Google Scholar
     

  • Marklund N. Blast-Induced Brain Injury. Management of Severe Traumatic Brain Injury: Evidence, Tricks, and Pitfalls 2020:109–113.

  • Aravind A, Ravula AR, Chandra N, Pfister BJ. Behavioral deficits in animal models of blast traumatic brain injury. Front Neurol. 2020;11:990.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bugay V, Bozdemir E, Vigil FA, Chun SH, Holstein DM, Elliott WR, et al. A mouse model of repetitive blast traumatic brain injury reveals post-trauma seizures and increased neuronal excitability. J Neurotrauma. 2020;37:248–61.

    Article 
    PubMed 

    Google Scholar
     

  • Tomura S, Seno S, Kawauchi S, Miyazaki H, Sato S, Kobayashi Y, et al. A novel mouse model of mild traumatic brain injury using laser-induced shock waves. Neurosci Lett. 2020;721:134827.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandell RM, Kudryashev JA, Kwon EJ. Targeting the extracellular matrix in traumatic brain injury increases signal generation from an activity-based nanosensor. ACS Nano. 2021;15:20504–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandell RM, Wu JR, Kwon EJ. Reprogramming clots for in vivo chemical targeting in traumatic brain injury. Adv Mater. 2024;2301738.

  • Nikolian VC, Dekker SE, Bambakidis T, Higgins GA, Dennahy IS, Georgoff PE, et al. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma. Crit Care Med. 2018;46:e59-66.

    Article 
    PubMed 

    Google Scholar
     

  • Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37:2320–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am. 2016;27:473–88.

    Article 
    PubMed 

    Google Scholar
     

  • Maas AI, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–1048.

    Article 
    PubMed 

    Google Scholar
     

  • Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, Hutchinson P, Maas AI, Manley G, Menon DK. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 2022;48:649–66.

    Article 
    PubMed 

    Google Scholar
     

  • van Erp IA, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K. Tackling neuroinflammation after traumatic brain injury: complement Inhibition as a therapy for secondary injury. Neurotherapeutics. 2023;20:284–303.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Huang X, Hang D, Jin J, Li S, Zhu Y, et al. Targeting pyroptosis with nanoparticles to alleviate neuroinflammatory for preventing secondary damage following traumatic brain injury. Sci Adv. 2024;10:eadj4260.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaj VN, Nguyen DT, Kodibagkar VD, Stabenfeldt SE. Nanoparticle-based therapeutics for brain injury. Adv Healthc Mater. 2018;7:1700668.

    Article 

    Google Scholar
     

  • Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug delivery for the treatment of traumatic brain injury. Expert Opin Drug Deliv. 2023;20:55–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol. 2005;63:301–6.

    Article 
    PubMed 

    Google Scholar
     

  • Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6):506–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saatman KE, Creed J, Raghupathi R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics. 2010;7:31–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J. Potential use of calpain inhibitors as brain injury therapy. 2015.

  • Kudryashev JA, Waggoner LE, Leng HT, Mininni NH, Kwon EJ. An activity-based nanosensor for traumatic brain injury. ACS Sens. 2020;5:686–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baudry M, Luo YL, Bi X. Calpain-2 inhibitors as therapy for traumatic brain injury. Neurotherapeutics. 2023;20:1592–602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoch KM, Von Reyn CR, Bian J, Telling GC, Meaney DF, Saatman KE. Brain injury-induced proteolysis is reduced in a novel calpastatin‐overexpressing transgenic mouse. J Neurochem. 2013;125:909–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bains M, Cebak JE, Gilmer LK, Barnes CC, Thompson SN, Geddes JW, et al. Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic brain injury model. J Neurochem. 2013;125:125–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andriessen TM, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med. 2010;14:2381–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czogalla A, Sikorski A. Spectrin and calpain: a ‘target’and a ‘sniper’in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62:1913–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, Smith DH. Blood biomarkers for traumatic brain injury: a quantitative assessment of diagnostic and prognostic accuracy. Front Neurol. 2019;10:446.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamakubo T, Kannagi R, Murachi T, Matus A. Distribution of calpains I and II in rat brain. J Neurosci. 1986;6:3103–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siman R, Giovannone N, Hanten G, Wilde EA, McCauley SR, Hunter JV, Li X, Levin HS, Smith DH. Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients. Front Neurol. 2013;4:190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018;18:165–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan X-X, Jeromin A. Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr Transl Geriatr Exp Gerontol Rep. 2012;1:85–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madias MI, Stessman LN, Warlof SJ, Kudryashev JA, Kwon EJ. Spatial measurement and inhibition of calpain activity in traumatic brain injury with an activity-based nanotheranostic platform. ACS Nano. 2024;18:25565–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Z, Han Y, Huang X, Ma H, Zhang X, Song J, Dong J, Li S, Yu R, Liu H. A novel targeted nanoparticle for traumatic brain injury treatment: combined effect of ROS depletion and calcium overload Inhibition. Adv Healthc Mater. 2022;11:2102256.

    Article 
    CAS 

    Google Scholar
     

  • Shohami E, Kohen R. The role of reactive oxygen species in the pathogenesis of traumatic brain injury. Oxidative Stress Free Radical Damage Neurol 2011; 99–118.

  • Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med. 1999;26:463–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewén A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–90.

    Article 
    PubMed 

    Google Scholar
     

  • Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F, Avellini L, Romano G, Senin U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol. 1997;31:53–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandya JD, Musyaju S, Modi HR, Cao Y, Flerlage WJ, Huynh L, Kociuba B, Visavadiya NP, Kobeissy F, Wang K. Comprehensive evaluation of mitochondrial redox profile, calcium dynamics, membrane integrity and apoptosis markers in a preclinical model of severe penetrating traumatic brain injury. Free Radic Biol Med. 2023;198:44–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, et al. Nanozymes: potential therapies for reactive oxygen species overproduction and inflammation in ischemic stroke and traumatic brain injury. ACS Nano. 2024;18:16450–67. https://doi.org/10.1021/acsnano.4c03425

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaj VN, Lifshitz J, Adelson PD, Kodibagkar VD, Stabenfeldt SE. Temporal assessment of nanoparticle accumulation after experimental brain injury: effect of particle size. Sci Rep. 2016;6:29988.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyd BJ, Galle A, Daglas M, Rosenfeld JV, Medcalf R. Traumatic brain injury opens blood–brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target. 2015;23:847–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waggoner LE, Kang J, Zuidema JM, Vijayakumar S, Hurtado AA, Sailor MJ, et al. Porous silicon nanoparticles targeted to the extracellular matrix for therapeutic protein delivery in traumatic brain injury. Bioconjug Chem. 2022;33:1685–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waggoner LE, Madias MI, Hurtado AA, Kwon EJ. Pharmacokinetic analysis of peptide-modified nanoparticles with engineered physicochemical properties in a mouse model of traumatic brain injury. AAPS J. 2021;23:100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo D, Magsam AW, Kelly AM, Stayton PS, Kievit FM, Convertine AJ. Core-cross-linked nanoparticles reduce neuroinflammation and improve outcome in a mouse model of traumatic brain injury. ACS Nano. 2017;11:8600–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cernak I, Savic J, Ignjatovic D, Jevtic M. Blast injury from explosive munitions. J Trauma Acute Care Surg. 1999;47:96–103.

    Article 
    CAS 

    Google Scholar
     

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1991;39:253–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duhaime A-C. Large animal models of traumatic injury to the immature brain. Dev Neurosci. 2006;28:380–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duhaime A-C, Margulies SS, Durham SR, O’Rourke MM, Golden JA, Marwaha S, et al. Maturation-dependent response of the piglet brain to scaled cortical impact. J Neurosurg. 2000;93:455–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutchke J, Anderson R, Sandoz B, Finnie J, Manavis J, Nishimoto T, Morris T, Wells A, Turner R, Vink R. A biomechanical model of traumatic contusional injury produced by controlled cerebrocortical indentation in sheep. In IRCOBI Conference Proceedings. 2016: 354–368.

  • King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CEM. Brain temperature profiles during epidural cooling with the chillerpad in a monkey model of traumatic brain injury. J Neurotrauma. 2010;27:1895–903.

    Article 
    PubMed 

    Google Scholar
     

  • Leung LY, Larimore Z, Holmes L, Cartagena C, Mountney A, Deng-Bryant Y, Schmid K, Shear D, Tortella F. The WRAIR projectile concussive impact model of mild traumatic brain injury: re-design, testing and preclinical validation. Ann Biomed Eng. 2014;42:1618–30.

    Article 
    PubMed 

    Google Scholar
     

  • Lighthall JW. Controlled cortical impact: a new experimental brain injury model. J Neurotrauma. 1988;5:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Namjoshi DR, Cheng WH, McInnes KA, Martens KM, Carr M, Wilkinson A, et al. Merging pathology with biomechanics using CHIMERA (Closed-Head impact model of engineered rotational Acceleration): a novel, surgery-free model of traumatic brain injury. Mol Neurodegener. 2014;9:1–18.

    Article 

    Google Scholar
     

  • Romine J, Gao X, Chen J. Controlled cortical impact model for traumatic brain injury. J Visualized Experiments: JoVE 2014;51781.

  • Williams AJ, Hartings JA, Lu X-CM, Rolli ML, Dave JR, Tortella FC. Characterization of a new rat model of penetrating ballistic brain injury. J Neurotrauma. 2005;22:313–31.

    Article 
    PubMed 

    Google Scholar
     

  • Laurer HL, Lenzlinger PM, McIntosh TK. Models of traumatic brain injury. Eur J Trauma. 2000;26:95–110.

    Article 

    Google Scholar
     

  • Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F. Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury. Brain. 2025;148:1062–80.

    Article 
    PubMed 

    Google Scholar
     

  • Petersen A, Soderstrom M, Saha B, Sharma P. Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments. Exp Brain Res. 2021;239:2939–50.

    Article 
    PubMed 

    Google Scholar
     

  • Adelson PD, Ragheb J, Muizelaar JP, Kanev P, Brockmeyer D, Beers SR, Brown SD, Cassidy LD, Chang Y, Levin H. Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery. 2005;56:740–54.

    Article 
    PubMed 

    Google Scholar
     

  • Adelson PD, Wisniewski SR, Beca J, Brown SD, Bell M, Muizelaar JP, et al. Comparison of hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a phase 3, randomised controlled trial. Lancet Neurol. 2013;12:546–53.

    Article 
    PubMed 

    Google Scholar
     

  • Beca J, McSharry B, Erickson S, Yung M, Schibler A, Slater A, et al. Hypothermia for traumatic brain injury in children—a phase II randomized controlled trial. Crit Care Med. 2015;43:1458–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collaborators CT. Effect of intravenous corticosteroids on death within 14 days in 10 008 adults with clinically significant head injury (MRC crash trial): randomised placebo-controlled trial. Lancet. 2004;364:1321–8.

    Article 

    Google Scholar
     

  • Robertson CS, McCarthy JJ, Miller ER, Levin H, McCauley SR, Swank PR. Phase II clinical trial of atorvastatin in mild traumatic brain injury. J Neurotrauma. 2017;34:1394–401.

    Article 
    PubMed 

    Google Scholar
     

  • Skolnick BE, Maas AI, Narayan RK, Van Der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371:2467–76.

    Article 
    PubMed 

    Google Scholar
     

  • Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, Salomone JP, Dent LL, Harris OA. Ander DS: protect: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49:391–402. e392.

    Article 
    PubMed 

    Google Scholar
     

  • Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, Goldstein FC, Caveney AF, Howlett-Smith H, Bengelink EM. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371:2457–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bramlett HM, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma. 2015;32:1834–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.

    Article 
    PubMed 

    Google Scholar
     

  • Nowak M, Helgeson ME, Mitragotri S. Delivery of nanoparticles and macromolecules across the blood–brain barrier. Adv Ther. 2020;3:1900073.

    Article 

    Google Scholar
     

  • Diaz MD, Kandell RM, Wu JR, Chen A, Christman KL, Kwon EJ. Infusible extracellular matrix biomaterial promotes vascular integrity and modulates the inflammatory response in acute traumatic brain injury. Adv Healthc Mater. 2023;12:2300782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An activity-Based nanosensor for Minimally‐Invasive measurement of protease activity in traumatic brain injury. Adv Funct Mater. 2023;33:2300218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagraoui M, Sukumar G, Latoche JR, Maynard SK, Dalgard CL, Schaefer BC. Salsalate treatment following traumatic brain injury reduces inflammation and promotes a neuroprotective and neurogenic transcriptional response with concomitant functional recovery. Brain Behav Immun. 2017;61:96–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 2014;505:223–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, Kambhampati SP, Zhang Z, Sharma A, Chen S, Duh EI, et al. Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury. J Controlled Release. 2020;323:361–75.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Y, Wang H, Fang J, Dai W, Zhou J, Wang X, Zhou M. SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury. Oxidative Medicine and Cellular Longevity 2018, 2018:4783602.

  • Mann AP, Scodeller P, Hussain S, Joo J, Kwon E, Braun GB, Mölder T, She Z-G, Kotamraju VR, Ranscht B. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. 2016;7:11980.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruoslahti E. Molecular ZIP codes in targeted drug delivery. Proc Natl Acad Sci U S A. 2022;119:e2200183119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu X, He H, Wang J, Long W, Li Q, Liu H, Gao Y, Ouyang L, Ren Q, Sun S, et al. Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic brain injury. Nano Lett. 2019;19:4527–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waggoner LE, Miyasaki KF, Kwon EJ. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomater Sci. 2023;11:4238–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han S, Yoo W, Carton O, Joo J, Kwon EJ. Pegylated multimeric RNA nanoparticles for siRNA delivery in traumatic brain injury. Small. 2025;21:2405806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandell RM, Wu JR, Kwon EJ. Reprograming clots for in vivo chemical targeting in traumatic brain injury. Adv Mater. 2024;36:2301738.

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Advances Biomedical engineering Biotechnology brain Drug delivery Molecular Medicine nanomaterials Nanotechnology nanotherapeutics overcoming Theranostic Translational research traumatic
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleWIRED Roundup: AI Psychosis, Missing FTC Files, and Google Bedbugs
    Next Article Live-Action ‘Call of Duty’ Movie Reportedly Being Co-Written by Taylor…
    Editor-In-Chief
    • Website

    Related Posts

    Nanotechnology

    Magnetically tunable selectivity in methane oxidation enabled by Fe-em…

    November 4, 2025
    Nanotechnology

    hype or hope? – Physics World

    November 3, 2025
    Nanotechnology

    More Effective, Less Harmful Chemotherapy

    November 2, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    100+ TikTok Statistics Updated for December 2024

    December 4, 202496 Views

    How to Fix Cant Sign in Apple Account, Verification Code Not Received …

    February 11, 202577 Views

    BenQ PD2730S Review – MacRumors

    February 14, 202529 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    About Us

    Welcome to TheLinkX – your trusted source for everything tech and gadgets! We’re passionate about exploring the latest innovations, diving deep into emerging trends, and helping you find the best tech products to suit your needs. Our mission is simple: to make technology accessible, engaging, and inspiring for everyone, from tech enthusiasts to casual users.

    Our Picks

    Co-op game Overcooked may become a competition reality TV show on Netf…

    November 5, 2025

    7 Proven Ways to Boost Your Environmental Impact

    November 5, 2025

    Beyond Survival: New York’s Game-Changing Investment in Safety Net Hos…

    November 5, 2025

    Subscribe to Updates

    Get the latest tech news from thelinkx.com about tech, gadgets and trendings.

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Thelinkx.All Rights Reserved Designed by Prince Ayaan

    Type above and press Enter to search. Press Esc to cancel.